
Opportunistic Use of 
Content Addressable 

Storage for Distributed 
File Systems

Niraj Tolia†*, Michael Kozuch†, M. Satyanarayanan†*, Brad Karp†,
Thomas Bressoud†‡, and Adrian Perrig*

*Carnegie Mellon University, †Intel Research Pittsburgh and ‡Denison University



2

Introduction

Using a Distributed File System on a Wide 
Area Network is slow!
However, there seems to be a growth in the 
number of providers of Content Addressable 
Storage (CAS)
Therefore can we make opportunistic use of 
these CAS providers to benefit client-server 
file systems like NFS, AFS, and Coda?



3

Content Addressable Storage
Content Addressable Storage is data that is 
identified by its contents instead of a name

Foo.txtFoo.txtFoo.txt 0xd58e23b71b1b...0xd58e23b71b1b...

File Content 
Addressable Name

Cryptographic
Hash

An example of a CAS provider is a 
Distributed Hash Table (DHT)



4

Motivation
Use CAS as a performance enhancement 
when the file server is remote
Convert data transfers from WAN to LAN

CAS
Providers

File Server Client



5

Talk Outline

Introduction
The CASPER File System

Building Blocks
• Recipes
• Jukeboxes
• Recipe Servers

Architecture
Benchmarks and Performance
Fuzzy Matching
Conclusions



6

The CASPER File System

It can make use of any available CAS 
provider to improve read performance
However it does not depend on the CAS 
providers

• In the absence of a useful CAS provider, you are 
no worse off than you originally were

Writes are sent directly to the File Server 
and not to the CAS provider



7

Recipes

File Data Content 
Addressable Name

0x330c7eb274a4...0x330c7eb274a4...

0x1deb72e98470...0x1deb72e98470...

0xf13758906c8d...0xf13758906c8d...

0xe13b918d6a50...0xe13b918d6a50...

0xf9d09794b6d7...0xf9d09794b6d7...

RecipeCryptographic Hash 



8

Building Blocks: Recipes

Description of objects in a content 
addressable way
First class entity in the file system

• Can be cached

Uses XML for data representation
• Compression used over the network

Can be maintained lazily as they contain 
version information

lego.com



9

Recipe Example (XML)
<recipe type="file">
<metadata>
<version>00 00 01 04 01</version>
…

</metadata>

<recipe_choice>
<hash_list hash_type="SHA-1" block_type="variable"

number="5">
<hash size="4189">330c7eb274a4...</hash>
…

</hash_list>
</recipe_choice>

</recipe>



10

CASPER Architecture

Client

DFS
Client

Recipe
Server

DFS File
Server

Server

WAN Connection DFS File
Server

CAS Provider

LA
N

 C
on

ne
ct

io
n

Jukebox



11

Building Blocks: Jukeboxes
Jukeboxes are abstractions of a Content 
Addressable Storage provider

• Provide access to data based on their hash value

Provide no guarantee to consumers about 
persistence or reliability
Support a Query() and Fetch() interface

• MultiQuery() and MultiFetch() also available

Examples include your desktop, a 
departmental jukebox, P2P systems, etc.



12

Building Blocks: Recipe Server

This module generates recipe representation 
of files present in the underlying file system
Can be placed either on the Distributed File 
System server or on any other machine well 
connected to it
Helps in maintaining consistency by 
informing the client of changes in files that it 
has reconstructed

lego.com



13

CASPER details…
The file system is based on Coda

• Whole file caching, open-close consistency

Proxy based layering approach used
Coda takes care of consistency, conflict 
detection, resolution, etc.

• The file server is the final authoritative source

CASPER allows us to service cache misses 
faster that might be usually possible



14

CASPER Architecture

DFS
Client

Client

Coda
Client

DFS
Proxy

Recipe
Server

DFS File
Server

Server

Coda File
Server

WAN Connection

CAS Provider

LA
N

 C
on

ne
ct

io
n

Jukebox



15

CASPER Implementation

Coda
Client

DFS
Proxy

Recipe
Server

Coda File
Server

CAS Provider

2. Recipe Request

3. Recipe Response
LA

N
 C

on
ne

ct
io

n

1. File Request
4.

 C
A

S
 R

eq
ue

st

5.
 C

A
S

 R
es

po
ns

e

6. Missed Block Request

7. Missed Block Response

Client

WAN Connection

Server

Jukebox



16

Talk Outline

Introduction
The CASPER File System

Building Blocks
• Recipes
• Jukeboxes
• Recipe Servers

Architecture
Benchmarks and Performance
Fuzzy Matching
Conclusions



17

Experimental Setup

NIST Net Router
Client

File Server +
Recipe Server

Jukebox

WAN bandwidth limitations between the server 
and client were controlled using NIST Net

• 10 Mb/s, 1 Mb/s + 10ms, and 100 Kb/s + 100ms

The hit-ratio on the jukebox was set to 100%, 
66%, 33%, and 0%
Clients began with a cold cache (no files or 
recipes)



18

Benchmarks

Binary Install Benchmark
Virtual Machine Migration
Modified Andrew Benchmark



19

Benchmark Description
Binary Install (RPM based)

Installed RPMs for the Mozilla 1.1 browser
• 6 RPMs, Total size of 13.5 MB

Virtual Machine migration
Time taken to resume a migrated Virtual 
Machine and execute a MS Office-based 
benchmark
Trace accesses ~1000 files @ 256 KB each

• No think time modeled



20

Benchmark Description (II)
Modified Andrew Benchmark

Phases include: Create Directory, Copy, 
Scan Directory, Read All, and Make

• However, only the Copy phase will exhibit an 
improvement

Uses Apache 1.3.27
• 11.36 MB source tree, 977 files
• 53% of files are less than 4 KB and 71% of them 

are less than 8 KB in size



21

Mozilla (RPM) Install

Time normalized 
against vanilla Coda
Gain most pronounced 
at lower bandwidth
Very low overhead 
seen for these 
experiments (between 
1-5 %)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 Kb/s 1 Mb/s 10 Mb/s

N
or

m
al

iz
ed

 R
un

tim
e

100% 66% 33% 0%

44 sec150 sec1238 secBaseline



22

Virtual Machine Migration

Time normalized 
against vanilla Coda
Large amounts of data 
show benefit even at 
higher bandwidths
High overhead seen at 
10 Mb/s is an artifact of 
data buffering

0

0.2

0.4

0.6

0.8

1

1.2

1.4

100 Kb/s 1 Mb/s 10 Mb/s

N
or

m
al

iz
ed

 R
un

tim
e 

100% 66% 33% 0%

203 sec2046 sec21523 secBaseline



23

Andrew Benchmark

Only the Copy phase 
shows benefits
More than half of the 
files are fetched over 
the WAN without 
talking to the jukebox 
because of their small 
size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100 Kb/s 1 Mb/s 10 Mb/s

N
or

m
al

iz
ed

 R
un

tim
e

100% 66% 33% 0%

1.
5 1.
6

1.
8

13 sec103 sec1150 secBaseline



24

Commonality
The question of where and how much 
commonality can be found is still open
However, there are a number of applications 
that will benefit from this approach

Some of the applications that would benefit 
include:

Virtual Machine Migration
Binary Installs and Upgrades
Software Development



25

Mozilla binary commonality

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

mozilla-
16

mozilla-
17

mozilla-
18

mozilla-
19

mozilla-
20

mozilla-
21

mozilla-
22

mozilla-
23

mozilla-
24

mozilla-
25

mozilla-16 mozilla-17 mozilla-18 mozilla-19 mozilla-20 mozilla-21
mozilla-22 mozilla-23 mozilla-24 mozilla-25



26

Linux kernel commonality – 2.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.2
.0

2.2
.1

2.2
.2

2.2
.3

2.2
.4

2.2
.5

2.2
.6

2.2
.7

2.2
.8

2.2
.9

2.2
.10

2.2
.11

2.2
.12

2.2
.13

2.2
.14

2.2
.15

2.2
.16

2.2
.17

2.2
.18

2.2
.19

2.2
.20

2.2
.21

2.2
.22

2.2
.23

2.2
.24

2.2.0 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8

2.2.9 2.2.10 2.2.11 2.2.12 2.2.13 2.2.14 2.2.15 2.2.16 2.2.17

2.2.18 2.2.19 2.2.20 2.2.21 2.2.22 2.2.23 2.2.24



27

Related Work

Delta Encoding
• rsync, HTTP, etc.

Distributed File Systems
• NFS, AFS, Coda, etc.

P2P Content Addressable Networks
• Chord, Pastry, Freenet, CAN, etc.

Hash based storage and file systems
• Venti, LBFS, Ivy, EMC’s Centera, Farsite, etc.



28

Conclusions

Introduction of the concept of recipes

Proven benefits of opportunistic use of 
content providers by traditional distributed 
file systems on WANs

Introduced “Fuzzy Matching”



29



30

Backup Slides



31

Where did the time go?
For the Andrew benchmark

Reconstruction of a large number of small 
files takes 4 roundtrips
There is also the overhead of compression, 
verification, etc.

Some part of the system (CAS requests) can 
be optimized by performing work in parallel



32

Number of round trips

Coda
Client

DFS
Proxy

Recipe
Server

Coda File
Server

CAS Provider

1. Recipe Request

Recipe Response
LA

N
 C

on
ne

ct
io

n
2 

&
 3

C
A

S
 R

eq
ue

st

C
A

S
 R

es
po

ns
e 4. Missed Block Request

Missed Block Response

Client

WAN Connection

Server

Jukebox



33

Absolute Andrew

13.3 (0.5)103.3 (0.5)1150.7 (0.5)Baseline
23.7 (0.5)108.7 (0.5)1069.3 (1.7)0%
21.3 (0.5)85.0 (0.8)762.7 (0.5)33%
20.0 (1.6)64.0 (0.8)520.7 (0.5)66%
17.3 (1.2)40.3 (0.9)261.3 (0.5)100%
10 Mb/s1 Mb/s100 Kb/s

Network BandwidthJukebox 
Hit-Ratio

Andrew Benchmark: Copy Performance (sec)



34

NFS Implementation?
The benchmark results would not change 
significantly (with the possible exception of 
the Virtual Machine migration benchmark).
It is definitely possible to adopt a similar 
approach

In fact, an NFS proxy (without CASPER) 
exists.

However, the semantics of such a system 
are still unclear…



35

Fuzzy Matching
Question: Can we convert an incorrect block 
into what we need?
If there is a block that is “near” to what is 
needed, treat it as a transmission error
Fix it by applying an error-correcting code
Fuzzy Matching needs three components

• Exact hash
• Fuzzy hash
• ECC information



36

Fuzzy Hashes

File Data

4 7 8 9 2 0Shingleprints 3

Sort

0 2 3 4 7 8 9

Fuzzy Hash



37

Fuzzy Hashing and ECCs

A fuzzy hash could simply be a shingle
• Hash a number of features with a sliding window
• Take the first m hashes after sorting to be 

representative of the data
• These m shingles are used to find “near” blocks

After finding a similar block, an ECC that 
tolerates a number of changes could be 
applied to recover the original block
Definite tradeoff between recipe size and 
Fuzzy Matching but this approach is 
promising



38

Linux kernel commonality - 2.4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.4
.0

2.4
.1

2.4
.2

2.4
.3

2.4
.4

2.4
.5

2.4
.6

2.4
.7

2.4
.8

2.4
.9

2.4
.10

2.4
.11

2.4
.12

2.4
.13

2.4
.14

2.4
.15

2.4
.16

2.4
.17

2.4
.18

2.4
.19

2.4
.20

2.4.0 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8

2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 2.4.14 2.4.15 2.4.16 2.4.17

2.4.18 2.4.19 2.4.20



39

Linux kernel – 2.2 (B/W)


	Opportunistic Use of Content Addressable Storage for Distributed File Systems
	Introduction
	Content Addressable Storage
	Motivation
	Talk Outline
	The CASPER File System
	Recipes
	Building Blocks: Recipes
	Recipe Example (XML)
	CASPER Architecture
	Building Blocks: Jukeboxes
	Building Blocks: Recipe Server
	CASPER details…
	CASPER Architecture
	CASPER Implementation
	Talk Outline
	Experimental Setup
	Benchmarks
	Benchmark Description
	Benchmark Description (II)
	Mozilla (RPM) Install
	Virtual Machine Migration
	Andrew Benchmark
	Commonality
	Mozilla binary commonality
	Linux kernel commonality – 2.2
	Related Work
	Conclusions
	
	Backup Slides
	Where did the time go?
	Number of round trips
	Absolute Andrew
	NFS Implementation?
	Fuzzy Matching
	Fuzzy Hashes
	Fuzzy Hashing and ECCs
	Linux kernel commonality - 2.4
	Linux kernel – 2.2 (B/W)

