
Opportunistic Use of Content Addressable Storage for
Distributed File Systems

Niraj Tolia†‡, Michael Kozuch‡, Mahadev Satyanarayanan†‡, Brad Karp‡,
Thomas Bressoud‡?, and Adrian Perrig†

‡Intel Research Pittsburgh, †Carnegie Mellon University, and ?Denison University

Abstract

Motivated by the prospect of readily available Content
Addressable Storage (CAS), we introduce the concept of
file recipes. A file’s recipe is a first-class file system object
listing content hashes that describe the data blocks compos-
ing the file. File recipes provide applications with instruc-
tions for reconstructing the original file from available CAS
data blocks. We describe one such application of recipes,
the CASPER distributed file system. A CASPER client op-
portunistically fetches blocks from nearby CAS providers
to improve its performance when the connection to a file
server traverses a low-bandwidth path. We use measure-
ments of our prototype to evaluate its performance under
varying network conditions. Our results demonstrate signif-
icant improvements in execution times of applications that
use a network file system. We conclude by describing fuzzy
block matching, a promising technique for using approxi-
mately matching blocks on CAS providers to reconstitute the
exact desired contents of a file at a client.

1 Introduction

The exploding interest in distributed hash tables
(DHTs) [6, 26, 28, 34] suggests that Content Addressable
Storage (CAS) will be a basic facility in future computing
environments. In this paper we show how CAS can be used
to improve the performance of a conventional distributed file
system built on the client-server model. NFS, AFS and Coda
are examples of distributed file systems that are now well-
entrenched in many computing environments. Our goal is
to improve client performance in situations where a distant
file server is accessed across a slow WAN, but one or more
CAS providers that export a standardized CAS interface are
located nearby on a LAN.

The concept of a file recipe is central to our approach.
The recipe for a file is a synopsis that contains a list of data
block identifiers; each block identifier is a cryptographic
hash over the contents of the block. Once the data blocks
identified in a recipe have been obtained, they can be com-
bined as prescribed in the recipe to reconstruct the file. On a
cache miss over a low-bandwidth network, a client may re-
quest a file’s recipe rather than its data. Often, the client may
be able to reconstruct the file from its recipe by contacting
nearby CAS providers (including CAS services available on

the client) to which it has LAN access. In this usage sce-
nario, a recipe helps transform WAN accesses into LAN (or
local client) accesses. Since a recipe is a first class entity,
it can be used as a substitute for the file in many situations.
For example, if space is tight in a file cache, files may be
replaced by the corresponding recipes, which are typically
much smaller. This is preferable to evicting the file entirely
from the cache because the recipe reduces the cost of the
cache miss resulting from a future reference to the file. If
the client is disconnected, the presence of the recipe may
make even more of a difference — replacing an unservice-
able cache miss by file reconstruction.

It is important to note that our approach is opportunis-
tic: we are not dependent on CAS for the correct operation
of the distributed file system. The use of recipes does not
in any way compromise attributes such as naming, consis-
tency, or write-sharing semantics. Indeed, the use of CAS
is completely transparent to users and applications. When
reconstructing a file, some blocks may not be available from
CAS providers. In that case, those blocks must be fetched
from the distant file server. Even in this situation, there is no
loss of consistency or correctness.

CAS providers can be organized peer-to-peer networks
such as Chord [34] and Pastry [28], but may also be im-
promptu systems. For example, each desktop on a LAN
could be enhanced with a daemon that provides a CAS in-
terface to its local disk. The CAS interface can be ex-
tremely simple; in our work, we use just four calls Query,
MultiQuery, Fetch, and MultiFetch (explained in more
detail in Section 5.3). With such an arrangement, system ad-
ministrators could offer CAS access without being required
to abide by any peer-to-peer protocol or provide additional
storage space. In particular, CAS providers need not make
any guarantees regarding content persistence or availability.

As a proof of concept, we have implemented a dis-
tributed file system called CASPER that employs file
recipes. We have evaluated CASPER at different bandwidths
using a variety of benchmarks. Our results indicate that sub-
stantial performance improvement is possible through the
use of recipes. Because CASPER imposes no requirements
regarding the availability of CAS providers, they are free to
terminate their service at any time. This encourages users
to offer their desktops as CAS providers with the full con-
fidence that they can withdraw at any time. In some envi-

ronments, a system administrator may prefer to dedicate one
or more machines as CAS providers. Such a dedicated CAS
provider is referred to as a jukebox.

After summarizing related work in Section 2, we dis-
cuss the utility of recipes and propose an XML represen-
tation in Section 3. We next describe the architecture of
CASPER in Section 4, and relate details of its implementa-
tion in Section 5. In Section 6, we evaluate the performance
of CASPER and quantify its performance dependence on the
availability of matching CAS blocks. We briefly review se-
curity considerations associated with using recipes in Sec-
tion 7. We propose a technique in Section 8 for using simi-
lar blocks, not only exactly matching blocks, with CAS. We
summarize our findings and conclude in Section 9.

2 Related Work

The use of content hashes to represent files in file sys-
tems has been explored previously. Single Instance Stor-
age [2] uses content hashes for compression, to coalesce du-
plicate files, and Venti [24] employs a similar approach at the
block level. The Low Bandwidth File System (LBFS) [19]
operates on variable-length blocks, and exploits commonal-
ity between distinct files and successive versions of the same
file in the context of a distributed file system. The Pastiche
backup system [7] employs similar mechanisms. In all these
systems, content hashes are used internally. The CASPER
file system described herein uses similar techniques, but pro-
poses a canonical representation of hash-based file descrip-
tions (recipes), and promotes those descriptions to members
of a first-class data type. CASPER introduces the concept
of a portable recipe that can be used to support legacy appli-
cations. In addition, CASPER allows all nodes with storage
to participate as CAS providers, whereas prior systems, such
as LBFS, restrict their search for file system commonality to
the individual peer client and server.

Much attention has been devoted to using overlay net-
works to form Distributed Hash Tables (DHTs). Re-
cent work in this area includes Chord [34], Pastry [28],
CAN [26], and Freenet [6]. We believe that these DHTs
are very valuable in the CAS context, where they may act as
content providers for our system.

File systems built atop these DHTs include CFS [8],
PAST [11], and Ivy [20]. These systems, while completely
decentralized, share the model that participants that join the
overlay offer write access to their local storage to other par-
ticipants, either directly or indirectly. In CAS, participants
may offer to share the contents of their storage with others
without agreeing to store others’ data. Moreover, a CASPER
client can function without connectivity to a widely dis-
persed collection of overlay members. A CASPER client
always can fall back to requesting data from its file servers,
and choose to exploit available DHT infrastructure when
beneficial. With the exception of Ivy, peer-to-peer file sys-
tems have traditionally been read-only or single-publisher

systems. CASPER, however, can be layered over any tradi-
tional network file system, without changing the original file
system’s semantics.

Both Fluid Replication [15] and Pangaea [30] also attack
the distributed file system performance problem on wide-
area networks. Fluid Replication differs from CASPER in
its dependence on dedicated machines to aid update propa-
gation; while not implemented in CASPER, these techniques
could complement our approach. While CASPER provides
a conventional access control model in a client-server archi-
tecture, Pangaea uses a decentralized model and is designed
to allow for ad hoc sharing and replication of data.

There is also a significant body of work in the area of
delta encoding [18, 36, 37], but these methods require a fixed
reference point for data comparison. CASPER, on the other
hand, is opportunistic, does not need fixed file references,
and works correctly in the absence of any previous version
of an object.

3 Recipes

File recipes provide instructions for the construction of
files from CAS data blocks. A recipe lists the addresses of
CAS blocks that compose the desired file and describes the
arrangement of those component blocks. For example, a file
object could be divided into a sequence of 4 KB blocks. By
listing the SHA-1 [22] hash of each block in order, we derive
one possible recipe for the file. Other possible recipes exist:
a sequence of SHA-1 hashes of 8 KB blocks or a sequence
of hashes of variably sized blocks (such as might be gen-
erated using Rabin fingerprints [19, 25]). Once an object’s
recipe is known, the object may be reconstructed by fetch-
ing the component CAS objects (the “ingredients”) named
in the recipe from any available source and combining them
as specified in the recipe.

Further, a recipe may include multiple recipe choices.
Each choice is one possible method for describing the origi-
nal file. With more than one choice available, a recipe-based
application (e.g., the CASPER file system) may select the
most appropriate recipe choice for the situation. Suppose,
for example, that CAS providers on one campus only sup-
port SHA-1 hashes of 4 KB blocks while CAS providers
on a neighboring campus only support MD5 [27] hashes
on 8 KB blocks. If a file recipe contains two choices, one
based on SHA-1, 4 KB hashes and the other based on MD5,
8 KB hashes, the corresponding file could be reconstructed
by recipe-based applications on either campus.

Each recipe maps a set of ingredients from the CAS
namespace to a higher-level namespace, such as a file-
system namespace. However, recipes are themselves first-
class objects and may be stored in the higher-level names-
pace. One benefit of their first-class status is that recipes can
be cached, and the consistency of recipes may be maintained
by traditional coherency mechanisms. For example, in the
CASPER file system, file recipes are stored as ordinary files

<?xml version="1.0"?>
<recipe type="file">

<metadata>
<length>125637</length>
<last_modified>11/12/2002 16:24:37</last_modified>
<file_system type="Coda">

<name>/coda/projects/shared/casper.pl</name>
<fid>312567 0 678</fid>
<version>6 7 3 4 9</version>

</file_system>
</metadata>

<recipe_choice>
<hash_list hash_type="SHA-1" block_type="fixed"

fixed_size="4096" number="31">
<hash>09d2af8dd22...</hash>
<hash>e5fa44f2b31...</hash>
.
.

</hash_list>
</recipe_choice>

<recipe_choice>
<hash_list hash_type="SHA-1" block_type="variable"

number="36">
<hash size="3576">7448d8798a4...</hash>
<hash size="1278">a3db5c13ff9...</hash>
.
.

</hash_list>
</recipe_choice>

<recipe_choice>
<hash_list hash_type="MD5" block_type="fixed"

fixed_size="125637" number="1">
<hash>9c6b057a2b9...</hash>

</hash_list>
</recipe_choice>

</recipe>

Figure 1. Sample File Recipe

and may be cached in the file system cache. Consistency
between cached recipes and the server version of the recipe
is maintained by the cache coherency protocol. Consistency
between a file and its recipe is maintained lazily by main-
taining version numbers for all files.

We have adopted XML (Extended Markup Lan-
guage) [4] as the language for expressing recipes. An ex-
ample file recipe is shown in Figure 1. Of course, the main
motivation for employing XML is portability. We believe
that recipes are a generally useful abstraction, and therefore,
by encoding recipes in a portable format, various applica-
tions will be able to make use of the same infrastructure.

The sample recipe in Figure 1 describes a file of 125637
bytes. While generating the recipe, the application that cre-
ated the recipe included additional metadata such as the
last modified time, the type of file system where the file
was found, and file-system-specific data. Naturally, the
recipe metadata could be extended with other information
such as the file ownership and access permissions. Such
information, while not required for CASPER, may bene-
fit other applications that leverage file recipes. Following
the metadata XML element are three possible recipe choices

(recipe choice elements) for recreating the data that con-
stitute the file.

The first recipe choice is a list of SHA-1 hashes corre-
sponding to 4 KB blocks. In our grammar, a hash list is
used to denote a series of hashes whose contents should be
concatenated to form a region. In this case, the hashes com-
pose the entire file. In fact, the 31 4 KB blocks described
in the hash list compose an object slightly larger than the
length given in the metadata. In such cases, after assembly,
the resultant object must be truncated to the proper-length.

The second recipe choice is a hash list comprising
SHA-1 hashes of variable-length blocks, as might be gen-
erated by employing Rabin fingerprints to find block bound-
aries. Again, to reconstitute the file, the blocks correspond-
ing to the hashes in the hash list need only be concatenated
to form the original file.

The third recipe choice is a hash list comprising a sin-
gle MD5 hash of the entire file. This hash may be used as
a final checksum to ensure (statistically) end-to-end file in-
tegrity. When assembling a file from constituent blocks, the
recipe-based application may fail to find all the requested
CAS components. The missing components must be re-
trieved through another mechanism, and once obtained, the
complete file is assembled. The file-wide hash enables the
CAS application to provide confidence that the file was as-
sembled correctly.

Note that because the various choices provided in the
recipe are typically orthogonal, in some cases the CAS data
can be fetched from more than one CAS source. For ex-
ample, suppose that after attempting to reconstruct the file
from the 4 KB hash list, the recipe-based application deter-
mines that two of the 31 blocks could not be found. The
client could then query CAS providers to determine if the
appropriate blocks from the variable-length list that cover
the missing two blocks can be found. If so, the data from
those can be used to fill in the missing regions of the file.

4 The CASPER Distributed File System

CASPER is a distributed file system that employs file
recipes to reduce the volume of data transmitted from a file
server to its clients. CASPER clients cache files with whole-
file granularity, and relies on centralized file servers to guar-
antee data persistence and file consistency. The novel aspect
of CASPER is that clients make opportunistic use of nearby
CAS providers to improve performance and scalability.

If the available client-server bandwidth is low during a
file fetch operation, the client requests a recipe rather than
the contents of the file. Using the hashes contained in the
recipe, CASPER attempts to reconstruct the file by fetch-
ing components from nearby CAS providers. Any compo-
nents not found near the client are fetched from the CASPER
server, which is responsible for maintaining a master copy of
every file it serves.

Small files (our implementation classifies files smaller
than 4 KB as “small files”) often do not enjoy the benefits of
CAS acceleration due to recipe metadata and network over-
head costs. Consequently, CASPER does not employ the
recipe mechanism when transferring small files. Instead, the
data composing a small file is transferred directly.

CASPER caches data at a whole-file granularity to pro-
vide the file-session oriented, open-close consistency model
of AFS [13] and Coda [32, 33]. Consequently, once the file is
reconstructed, it is placed in the client cache. For efficiency,
CASPER clients treat their own caches as CAS providers.
Before requesting a component from nearby, external CAS
providers, clients inspect their own caches to determine if
the component is also part of a previously cached file. In
this way, CASPER mimics the fetch behavior of LBFS.

Throughout this paper, we are primarily concerned with
client reads. However, we intend to extend our current
implementation to accommodate client write operations by
adopting a similar local cache lookup mechanism on the
server-side. To leverage the recipe-based mechanism, we
view client writes as server reads of the modified file. When
sending file modifications to the server, a client sends a
recipe of the modified file rather than the file contents. The
server will then peruse its own data for instances of the com-
ponents, then request components that are not found locally
from nearby CAS providers, and finally retrieve any remain-
ing components from the client directly.

As recipes in CASPER are treated as hints, the consis-
tency between files and their recipes is managed in a lazy
fashion. The file system maintains a version number for each
file. When a recipe is generated, the recipe includes the ver-
sion of the file from which it was derived. Because CASPER
clients always check the expected version of the file against
the version stored in the recipe metadata, a cached stale
recipe will never be used to reconstruct a file. When a recipe
is determined to be stale, CASPER triggers the creation of a
new recipe by the server.

5 Implementation

Our implementation of CASPER is derived from the
Coda distributed file system, and we have adopted the mod-
ular, proxy-based layering approach described in the Data
Staging work [12]. Figure 2 depicts the organization of our
system. The Coda Client and Coda File Server modules
are unmodified releases of the Coda client and server, re-
spectively. The Proxy module is responsible for intercepting
communication between the client and server and determin-
ing whether or not to activate CASPER’s CAS functionality.
The Coda client and proxy together act as a CASPER client.
Likewise, the Coda file server and Recipe Server together act
as the CASPER server. The recipe server is the component
responsible for forming responses to recipe requests.

The proxy-based design enables us to prototype new
file-system features such as the CAS-based performance en-

hancements without modifying Coda. In this design, the
proxy provides the client with an interface identical to the
Coda server interface. The proxy monitors network condi-
tions and determines when to use an available CAS provider.
Under optimal conditions, the CASPER system behaves
identically to an unmodified Coda installation without the
proxy. After detecting low bandwidth network conditions,
however, the proxy registers with the recipe server and a
CAS provider. The provider in our example is a jukebox.

While low-bandwidth conditions persist, the proxy inter-
cepts all file requests from the client and asks for the corre-
sponding recipe from the recipe server. The recipe server
is responsible for generating a recipe for the current ver-
sion of the file and delivering it to the proxy. The proxy
then attempts to retrieve the data blocks named in the file
from nearby CAS providers (including the client’s own file
cache). The proxy will request that the recipe server also de-
liver any blocks not found on the CAS provider(s). Once the
file reconstruction is complete, it is passed back to the Coda
client, which places the file in its file cache. No other traffic,
such as writes, is currently intercepted by the proxy; instead
it passes directly to the file server.

In the next three sections, we describe the design and
implementation of the recipe server, proxy and jukebox in
more detail.

5.1 Recipe Server

As the name indicates, the recipe server generates the
recipe representation of files. However, this module is also
responsible for responding to requests for missed data blocks
and forwarding callbacks.

The recipe server is a specialized user process that ac-
cesses file-system information through the standard file-
system interface. Our implementation maintains generated
recipes as files in the CASPER file system. For user files in
a directory, zeta, the recipe server stores the corresponding
recipes in a sub-directory of zeta (e.g., zeta/.shadow/).

In Figure 2, we show the recipe server co-located with
the Coda server. However, any machine that is well-
connected to the server may act as the recipe server. In fact,
if a user has a LAN-connected workstation, that workstation
may make an excellent choice for the location of the user’s
primary recipe server because it is the most likely machine
to have a warm client cache.

When a recipe request arrives at the recipe server, the
recipe server first determines if the recipe file corresponding
to the request exists in the file system. If so, the recipe is
read, either from the recipe server’s cache or from the Coda
file server, and checked for consistency. That is, the ver-
sioning information in the recipe is compared to the current
version of the file. If the recipe is stale or does not exist, the
recipe server will generate a new one, send it to the proxy,
and store it in the shadow directory for potential reuse.

LA
N

Co
nn

ec
tio

n

WAN Connection

4.
 C

AS
 R

eq
ue

st

3. Recipe Response

2. Recipe Request

6. Missed Block Request

5.
 C

AS
 R

ep
ly

Coda
Client Proxy Recipe

Server

1. File Read

File Writes
CAS Storage

Coda
File

Server

Client

Jukebox

Server

7. Missed Block Response

Figure 2. System Diagram

As mentioned in Section 4, the recipe server responds
to requests for recipes of small files with the file’s contents
rather than the file’s recipe. The threshold in the current im-
plementation is 4 KB. The reason for this special handling
is that the transfer time of small messages in low-bandwidth
networks is often dominated by the network round-trip time.

Data blocks that are not found on any of the queried CAS
providers are referred to as missed blocks. In our imple-
mentation, the proxy fetches missed blocks from the recipe
server. Our recipe server supports requests for byte extents.
That is, a missed block request is of the form fetch(file,

offset, length). To reduce the number of transmitted
requests, missed blocks that are adjacent in the file are com-
bined into a single extent request by the proxy, and we em-
ploy the further optimization of combining multiple fetch
requests into a single multi-fetch message. In alternative im-
plementations, missed block requests could be serviced by
the file server. We chose to use the recipe server instead to
reduce the file server load in installations where the recipe
server is not co-located with the file server.

The recipe server also contributes to maintaining con-
sistency by forwarding callbacks from the file server to the
proxy for files that the proxy has reconstructed via recipes.
That is, if the recipe server receives an invalidation callback
for a file after sending a recipe for the file to a client, the
callback is forwarded to the requesting client via the proxy.

Because the recipe server is a user process and not a
Coda client, the recipe server does not receive the consis-
tency callbacks directly. Instead, the recipe server com-
municates with the Coda client module through coda-
con [31], Coda’s standard socket-based interface, which ex-
ports callback messages. Consequently, implementation of
the callback-forwarding mechanism did not require modifi-
cation of the client or server. Mechanisms that gather simi-
lar information, such as the SysInternals Filemon tool [35],
could potentially serve the same function should CASPER

be ported to network file systems that do not provide the
necessary interface.

5.2 Proxy

The proxy is the entity that transparently adds recipe-
based file reconstruction to distributed file systems without
modifying the file system code. This arrangement is not
necessary for the operation of CASPER but eased our im-
plementation of the prototype. The two main tasks that it
performs are fetching recipes and reconstructing files.

Because the proxy acts as the server for the client, the
proxy intercepts all file read requests originating from the
client. Client cache misses induce fetch requests which are
caught by the proxy. The fetch operation causes the proxy to
send a request for the file’s recipe to the recipe server; other
file system operations are forwarded directly to the Coda
server. Assuming that a recipe fetch request is successful,
the proxy compares the version in the received recipe to the
expected version of the file. If the recipe version is more up-
to-date than the proxy’s expected version number, the proxy
contacts the Coda server to confirm the file’s version num-
ber. If the recipe version is older, there might be a problem
with the recipe server (e.g., the recipe server may have be-
come disconnected from the Coda server), and therefore, the
request is redirected to the file server. The request is also
redirected to the file server if any unexpected recipe server
errors occur.

If the version numbers match, the proxy selects one of
the available recipe choices in the recipe file, and the proxy
proceeds to reconstruct the file. After interpreting the XML
data it received, the proxy queries both the client’s local
cache as well as any nearby jukeboxes for the hashes present
in the recipe. Matching blocks, if any, are fetched from the
jukeboxes, and the remaining blocks are fetched from the
recipe server. Finally, the proxy assembles all constituent
pieces and returns the resulting file to the client.

Retval Query(in Hash h, out Bool b);

Retval MultiQuery(in Hash harray[],

out Bool barray[]);

Retval Fetch(in/out Hash h, out Bool b,

out Block blk);

Retval MultiFetch(in/out Hash harray[],

out Bool barray[], out Block blks[]);

The Retval is an enumerated type indicating whether or not
the operation succeeded. Each operation also requires the
identification of a channel as an input argument (not shown).

Figure 3. The Core CAS API

Note that we disabled Nagle’s TCP/IP algorithm [21] for
all recipe and hash requests issued by the proxy because the
algorithm induced a performance overhead for these small
requests.

5.3 Content Addressable Storage API

The CAS API defines the interface between CAS con-
sumers and CAS providers. CAS consumers request data
blocks by specifying a hash of the blocks’ contents, and
providers are storage devices that can respond to those re-
quests. This API is what the proxy, a CAS consumer, uses
to communicate with jukeboxes, which are CAS providers.

At the interface level, CAS consumers address providers
through handles known as channels. This abstraction pro-
vides a common interface to all providers whether they are
peer-to-peer networks, jukeboxes, or other devices. The
CAS API provides a mechanism for obtaining the charac-
teristics of a channel. While we do not currently use this
mechanism, we envision that consumers will use it to de-
termine such channel characteristics as the type of hashes
supported, the channel’s bandwidth, and some measure of
the channel’s topological proximity to the consumer.

The enumeration of available channels is the responsi-
bility of a CAS API module running on the client system.
The general topic of service discovery over a network is a
rich area and will not be discussed here. In the context of
the CAS API, the role of service discovery is to enumerate
the set of available local and remote services and relay their
associated characteristics to the consumer. The underlying
mechanisms employed may be varied and may range from
static specification and local operating system mechanisms
to network-based protocols such as LDAP [14] or Universal
Plug ’n Play [38].

Figure 3 summarizes the operations of the CAS API. The
core operation of the CAS API is the retrieval of a CAS data
block given the block’s hash through the Fetch call. The
consumer specifies the hash of the object to be retrieved (the
hash data structure includes the hash type, block size, and
hash value) and a channel. Fetch returns a boolean indicat-
ing if the block was found on the specified channel and, if so,
the block itself. A consumer may instead make a single re-
quest for multiple blocks through the MultiFetch function,
specifying an array of hashes and a channel. This function

returns an array of Booleans and a set of data blocks. The
CAS API also provides associated Query and MultiQuery

operations for inquiring after the presence of a block without
allocating the buffer space or network bandwidth to have the
block returned.

We are currently developing a Content Addressable Stor-
age wire protocol as a companion to the CAS API. With
a common wire protocol, multiple CAS providers could be
discovered and used in a consistent manner without requir-
ing rewriting of the consumer-side CAS library code.

5.4 Jukebox

To evaluate our CASPER prototype, we implemented a
jukebox CAS provider that conforms to the API described
in Figure 3. The consumer-provider (proxy-jukebox) com-
munication that supports the Query and Fetch functions is
currently implemented by using a lightweight RPC protocol.

The jukebox, a Linux-based workstation, uses the na-
tive ext3fs file system to store the CAS data blocks. Cur-
rently, the system administrator determines a set of files to
be exported as CAS objects. The jukebox makes use of
recipes to track the location of data blocks within the ex-
ported files. The jukebox creates an in-memory index of the
data at startup. The index, keyed by the hash, provides an
efficient lookup mechanism.

6 Evaluation

We measured the performance benefit of recipe-based
file reconstruction using three different benchmarks. We
evaluated each benchmark under several combinations of
network bandwidth, network latency and jukebox hit-ratio.
We describe the experimental methodology, discuss the three
benchmarks, and present their results.

6.1 Experimental Methodology

Our experimental infrastructure consisted of several con-
temporary, single-processor machines. The jukebox and
client were workstations with 2.0 GHz Pentium R© 4 proces-
sors. While the client had 512 MB of SDRAM, the jukebox
had 1 GB. The file server contained a 1.2 GHz Pentium R© III
XeonTM processor and 1 GB of SDRAM.

The jukebox and client ran the Red Hat 7.3 Linux dis-
tribution with the 2.4.18-3 kernel, and the file server ran the
Red Hat 7.2 Linux distribution with the 2.4.18 kernel. All
machines ran version 5.3.19 of Coda with a large enough
disk cache on the client to prevent eviction during the exper-
iments. The recipe server process was co-located with the
file server. To discount the effect of cold I/O buffer caches,
we ran one trial of each experiment before taking any mea-
surements. However, we ensured that the Coda client cache
was cold for all experiments.

To simulate different bandwidths and latencies, we used
the NIST Net [23] network emulator, version 2.0.12. The

client was connected to the jukebox via 100 Mb/s Ethernet,
but the client’s connection to the server was controlled via
Nist Net. All benchmarks ran at three different client-server
bandwidths: 10 Mb/s, 1 Mb/s and 100 Kb/s. We do not
report results for a 100 Mb/s client-server connection, be-
cause CASPER clients should fetch data from the server di-
rectly when the client-server bandwidth is equal to, or better
than, the client-jukebox bandwidth. Extra latencies of 10 ms
and 100 ms were introduced for the 1 Mb/s and 100 Kb/s
cases, respectively. No extra latency was introduced for the
10 Mb/s case.

The effectiveness of recipe-based reconstruction in
CASPER is highly dependent on the fraction of data blocks
the client can locate on nearby CAS providers. We used sen-
sitivity analysis to explore the effect of the CAS provider hit
rate on CASPER performance. For each of the experiment
and bandwidth cases, the jukebox was populated with vari-
ous fractions of the requested data: 100%, 66%, 33%, and
0%. That is, in the 66% case, the jukebox is explicitly pop-
ulated with 66% of the data that would be requested during
the execution of the benchmark. The chunks for population
of the jukebox were selected randomly. The two extreme hit-
ratios of 100% and 0% give an indication of best-case perfor-
mance and the system overhead. Our baseline for compari-
son is the execution of the benchmarks with an unmodified
Coda client and server.

The recipes employed by CASPER for these experi-
ments included a single type of recipe choice: namely, SHA-
1 hashes of variable-size blocks with an average block size
of 4 KB (similar to LBFS). During the experiments, none
of the recipes were cached on the client. Every client cache
miss generated a recipe fetch for the file. Further, because
the client cache was big enough to prevent eviction of any re-
constructed files, the client never requested a file or a recipe
more than once.

6.2 Measured Commonality

The hit rate of requests to CAS providers is highly de-
pendent on the commonality in data between the file server
and the CAS providers. Further, we expect the degree of
commonality to depend on the applications that are trying
to exploit it. Some applications, like the virtual machine
migration benchmark used in our evaluation, would be well-
suited to a CASPER approach. This benchmark reconstructs
the data, including common operating system and applica-
tion code, found on typical disk drives. A preliminary study
by the authors of several user systems and prior work [3, 7]
suggest that a high degree of commonality may be expected
for this application.

Commonality may also be expected when retrieving
common binary or source-code distributions. For a software
developer, different versions of a source tree also seem to
exhibit this trend. For example, we compared the common-
ality between various releases of the Linux kernel source

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.
2.

0
2.

2.
1

2.
2.

2
2.

2.
3

2.
2.

4
2.

2.
5

2.
2.

6
2.

2.
7

2.
2.

8
2.

2.
9

2.
2.

10
2.

2.
11

2.
2.

12
2.

2.
13

2.
2.

14
2.

2.
15

2.
2.

16
2.

2.
17

2.
2.

18
2.

2.
19

2.
2.

20
2.

2.
21

2.
2.

22
2.

2.
23

2.
2.

24

2.2.0 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8
2.2.9 2.2.10 2.2.11 2.2.12 2.2.13 2.2.14 2.2.15 2.2.16 2.2.17
2.2.18 2.2.19 2.2.20 2.2.21 2.2.22 2.2.23 2.2.24

(a) Commonality between Linux 2.2 Kernel releases

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2.
4.

0

2.
4.

1

2.
4.

2

2.
4.

3

2.
4.

4

2.
4.

5

2.
4.

6

2.
4.

7

2.
4.

8

2.
4.

9

2.
4.

10

2.
4.

11

2.
4.

12

2.
4.

13

2.
4.

14

2.
4.

15

2.
4.

16

2.
4.

17

2.
4.

18

2.
4.

19

2.
4.

20

2.4.0 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7
2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 2.4.14 2.4.15
2.4.16 2.4.17 2.4.18 2.4.19 2.4.20

(b) Commonality between Linux 2.4 Kernel releases

0%

10%

20%

30%

40%
50%

60%

70%

80%

90%

100%

m
oz

ill
a-

16

m
oz

ill
a-

17

m
oz

ill
a-

18

m
oz

ill
a-

19

m
oz

ill
a-

20

m
oz

ill
a-

21

m
oz

ill
a-

22

m
oz

ill
a-

23

m
oz

ill
a-

24

m
oz

ill
a-

25

mozilla-16 mozilla-17 mozilla-18 mozilla-19 mozilla-20
mozilla-21 mozilla-22 mozilla-23 mozilla-24 mozilla-25

(c) Commonality between Mozilla nightly binary releases

Each data series represents the measured commonality be-
tween a reference version of the software package and all pre-
vious releases of that package. Each point in the data series
represents the percentage of data blocks from the reference
version that occur in the previous release. The horizontal axis
shows the set of possible previous releases, and the vertical
axis relates the percentage of blocks in common. Each data
series peaks at 100% when compared with itself.

Figure 4. Linux Kernel and Mozilla Commonality

code. For this study, we define commonality as the fraction
of unique blocks in common between pairs of releases.

Figures 4 (a) and (b) show the measured commonal-
ity between versions of the Linux 2.2 and 2.4 kernels. We
applied the block-extraction algorithm used in CASPER to
each kernel’s source tree and collected the unique hashes of
all blocks in the tree. We then compared the set of hashes
derived from each release to the set of hashes derived from
each previous release in its series. The results show that
commonality of 60% is not uncommon, even when the com-
pared source trees are several versions apart. The minimal
commonality we observe is approximately 30%. We will
show in Section 6.3.3 that even this degree of commonal-
ity can lead to significant performance benefits from CAS in
low-bandwidth conditions.

As small changes accumulate in source code over time,
the corresponding compiled binary will diverge progres-
sively more in content from earlier binaries. To assess
how commonality in binaries changes as small source-level
changes accumulate, we examined the nightly Mozilla bi-
nary releases from March 16th, 2003 to March 25th, 2003.
These measurements are presented in Figure 4 (c). A binary
on average shares 61% of its content in common with the bi-
nary of the preceding revision. In the worst case, where the
CAS jukebox only has the binary from March 16th, but the
client desires the binary from the 25th, we observe a com-
monality of 42%. We performed the same analysis on major
Mozilla releases, but observed significantly less commonal-
ity for those binaries, because of the great increase in code
size and functionality between releases. One interesting ex-
ception concerned release 1.2.1, a security fix; this release
had 91% commonality with the previous one.

These measurements of cross-revision commonality for
both source code and binaries are promising, but somewhat
domain-specific. The degree of commonality in users’ files
bears future investigation. Highly personalized data are un-
likely to be held in common by multiple users. But there
may be cases where users share large objects, such as email
attachments sent to many users in the same organization.
An investigation of cross-user commonality is beyond the
scope of this paper, as it requires a study of a substantial
user population. However, we demonstrate with measure-
ments that even in the presence of relatively little common-
ality, CASPER offers performance improvements to clients
with a low-bandwidth connection to their file server. More-
over, our measurements show that CASPER adds very little
overhead to file system operations when blocks cannot be
found at a jukebox.

6.3 Benchmarks

We evaluated three different benchmarks on the
CASPER file system: Mozilla software installation, an exe-
cution trace of a virtual machine application, and a modified
Andrew Benchmark. The descriptions of these benchmarks
together with experimental results is presented in the next
three sections.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100 Kb/s 1 Mb/s 10 Mb/s

N
or

m
al

iz
ed

 R
un

tim
e

100% 66% 33% 0%

Mozilla install times with different Jukebox hit-ratios at 100
Kb/s, 1 Mb/s, and 10 Mb/s with 100 ms, 10ms and no added
latency respectively. Each bar is the mean of three trials with
with the maximum standard deviation observed as 1%.

Figure 5. Results: Mozilla Install

6.3.1 Mozilla Install

Software distribution is one application for which
CASPER may prove effective. Often when installing or up-
grading a software package, a previous version of the pack-
age may be found on the target machine or another machine
near the target; the previous version may provide a wealth of
matching blocks.

To evaluate software distribution using CASPER, we
measured the time required to install the Mozilla 1.1
browser. The installation was packaged as 6 different RPM
Package Manager [29] (RPM) files ranging from 105 KB to
10.2 MB with a total size of 13.5 MB. All the files were kept
in a directory on the Coda File System and were installed by
using the rpm command with the -Uhv options.

Figure 5 reports the time taken for the Mozilla install to
complete at various network bandwidths. The times shown
are the mean of three trials with a maximum standard devi-
ation of 1%. To compare benefits at these different settings,
the time shown is normalized with respect to the time taken
for the baseline install with just Coda. The observed average
baseline install times at 100 Kb/s, 1 Mb/s, and 10 Mb/s are
1238 seconds, 150 seconds, and 44 seconds, respectively.
Note that apart from the network transfer time, the total time
also includes the time taken for the rpm tool to install the
packages.

As expected, the gain from using CASPER is most pro-
nounced at low bandwidths where even relatively modest

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

100 Kb/s 1 Mb/s 10 Mb/s

N
or

m
al

iz
ed

 R
un

tim
e

100% 66% 33% 0%

Internet Suspend/Resume benchmark times with different
Jukebox hit-ratios at 100 Kb/s, 1 Mb/s, and 10 Mb/s with 100
ms, 10ms and no added latency respectively. Each bar is the
mean of three trials with the maximum standard deviation ob-
served as 9.2%.

Figure 6. Results: ISR Benchmark

hit-rates can dramatically improve the performance of the
system. For example, the reduction in benchmark execution
time is 26% at 1 Mb/s with a 33% jukebox population. Fur-
ther, while we do not expect the CASPER system to be used
on networks with high bandwidth and low latency charac-
teristics as in the 10 Mb/s case, the graph shows that the
worst-case overhead is low (5%) and a noticeable reduction
in benchmark time is possible (approximately 20% in the
100% population case).

6.3.2 Internet Suspend/Resume

Our original motivation for pursuing opportunistic use of
Content Addressable Storage arose from our work on Inter-
net Suspend/Resume (ISR) [16]. ISR enables the migration
of a user’s entire computing environment by layering a vir-
tual machine system on top of a distributed file system. The
key challenge in realizing ISR is the transfer of the user’s vir-
tual machine state, which may be very large. However, the
virtual machine state will often include installations of pop-
ular operating systems and software packages – data which
may be expected to be found on CAS providers.

To investigate the potential performance gains obtained
by using CASPER for ISR, we employ a trace-based ap-
proach. For our workload, we traced the virtual disk drive
accesses observed during the execution of an ISR system that
was running a desktop application benchmark in demand-
fetch mode. The CDA (Common Desktop Application)

benchmark uses Visual Basic scripts to automate the execu-
tion of common desktop applications in the Microsoft Office
suite executing in a Windows XP environment.

By replaying the trace, we re-generate the file-access pat-
tern of the ISR system. The ISR data of interest is stored as
256 KB files in CASPER. During trace replay, the files are
fetched through CASPER on the client machine. During the
benchmark, approximately 1000 such files are accessed. The
trace does not include user think time.

Figure 6 shows the results from the Internet Sus-
pend/Resume benchmark at various network bandwidths.
The time shown is again the mean of three trials with a max-
imum standard deviation of 9.2%. The times shown are also
normalized with respect to the baseline time taken (using
unmodified Coda). The actual average baseline times at 100
Kb/s, 1 Mb/s, and 10 Mb/s are 5 hours and 59 minutes, 2046
seconds, and 203 seconds, respectively.

By comparing with the previous Mozilla experiment, we
can see that the benefit of using CASPER is even more pro-
nounced as the quantity of data transferred grows. Here, un-
like in the Mozilla experiment, even the 10 Mb/s case shows
significant gains from exploiting commonality for hit-ratios
of 66% and 100%.

Note that in the ISR experiment that used a 1 Mb/s link
and a 33% hit rate, CASPER reduced execution time by
44%. The interaction of application reads and writes ex-
plains this anomaly. Every time an application writes a disk
block after the virtual machine resumes, the write triggers
a read of that block, if that block has not yet been fetched
from the virtualized disk. Writes are asynchronous, and are
flushed to disk periodically. If CASPER speeds execution,
fewer writes are flushed to disk during the shorter run time,
and fewer write-triggered reads occur during that execution.
Conversely, if CASPER slows execution, more writes are
flushed to disk during the longer run time, and more write-
triggered reads occur during that execution. This interaction
between writes and reads also explains the higher-than- ex-
pected overhead in the 33% and 0% hit-ratio cases on the
10 Mb/s link.

6.3.3 Modified Andrew Benchmark

We also evaluated the system by using a modified An-
drew Benchmark [13]. Our benchmark is very similar to the
original but, like Pastiche [7], uses a much larger source tree.
The source tree, Apache 1.3.27, consists of 977 files that
have a total size of 8.62 MB. The script-driven benchmark
contains five phases. Beginning with the original source tree,
the scripts recreate the original directory structure, executes
a bulk file copy of all source files to the new structure, stats
every file in the new tree, scans through all files, and finally
builds the application.

To isolate the effect of CAS acceleration on file fetch op-
erations, the modified Andrew Benchmark experiments were
executed in write disconnected mode. Thus, once the Copy

Jukebox Network Bandwidth
hit-ratio 100 Kb/s 1 Mb/s 10 Mb/s
100% 261.3 (0.5) 40.3 (0.9) 17.3 (1.2)
66% 520.7 (0.5) 64.0 (0.8) 20.0 (1.6)
33% 762.7 (0.5) 85.0 (0.8) 21.3 (0.5)
0% 1069.3 (1.7) 108.7 (0.5) 23.7 (0.5)

Baseline 1150.7 (0.5) 103.3 (0.5) 13.3 (0.5)

Results from the Copy Phase of the modified Andrew Bench-
mark run at 100 Kb/s, 1 Mb/s, and 10 Mb/s with 100 ms, 10ms
and no added latency respectively. Each result is the mean of
three trials with the standard deviation given in parentheses

Figure 7. Results: Modified Andrew Benchmark Copy
Phase

phase was complete, a local copy of the files allowed all re-
maining phases to be unaffected by network conditions; only
the Copy phase will show benefit from the CASPER system.

The modified Andrew benchmark differs from the
Mozilla and ISR benchmarks in that the average file size is
small and more than half of the files are less than 4 KB in
size. As described in Section 5.2, the current system is con-
figured such that all recipe requests for files less than 4 KB
are rejected by the recipe server in favor of sending the file
instead. Thus while the jukebox might have the data for that
file, CASPER fetches it across the slow network link.

Note that as all operations happened in write discon-
nected state, MakeDir, ScanDir, ReadAll and Make were not
affected by bandwidth limitations, as they were all local op-
erations. As Figure 8 shows, these phases are not affected
by network conditions in the 1 Mb/s case. We observed very
similar numbers for the 100 Kb/s and 10 Mb/s cases.

Figure 7 therefore only presents results for the Copy
phase for all experiments, as Copy is the only phase for
which the execution time depends on bandwidth. The fig-
ure shows the relative benefits of using opportunistic CAS at
different bandwidths. The time shown is the mean of three
trials with standard deviations included within parentheses.
Interestingly, the total time taken for the 100 Kb/s experi-
ment with an hit-ratio of 0% is actually less than the base-
line. We attribute this behavior to the fact that some of the
data in the Apache source tree is replicated and consequently
matches blocks in the client cache.

The results for the 10 Mb/s case show a high over-
head in all cases. This benchmark illustrates a weakness
of the current CASPER implementation. When many small
files are transferred over the network, the performance of
CASPER is dominated by sources of overhead. For ex-
ample, our proxy-based approach induces several additional
inter-process transfers per file relative to the baseline Coda
installation. Further, the jukebox inspection introduces mul-
tiple additional network round-trip time latencies associated
with the jukebox query messages and subsequent missed-
block requests.

Normally, these sources of overhead would be compen-
sated for by the improved performance of converting WAN

accesses to LAN accesses. However, for this particular
benchmark the difference in peak bandwidth between our
LAN connection and simulated WAN connection was not
sufficient to compensate for the additional overhead. In prac-
tice, when CASPER detects such a high-bandwidth situa-
tion, the system should revert to baseline Coda behavior.
Such an adjustment would avoid the system slowdown il-
lustrated by this example.

7 Security Considerations

While the focus of our investigation has largely been on
distributed file system performance, there are security con-
siderations raised by the use of recipes. In this section, we
briefly comment on the interaction of recipes and file system
security. We consider the following security properties: data
confidentiality, data authenticity, data integrity, data privacy,
and user access control.

The foremost security concern raised by recipes is that
querying a jukebox for a file poses a privacy risk: the juke-
box learns the checksums of the blocks a user desires. With
a large database of common blocks and their checksums, a
malicious jukebox or eavesdropper could deduce the content
a user requests. This privacy risk appears to be fundamen-
tal to our approach. An efficient solution remains an open
problem.

Conventional encryption techniques also pose a chal-
lenge to recipe-based systems. If each user encrypts and
decrypts her data with a distinct secret key, the same plain-
text data would be encrypted into different ciphertext by
users with different encryption keys. In such a case where
commonality is obscured by encryption, a user could share
blocks with herself alone, with marginal benefit at best.
However, if we use convergent encryption [1, 9] (i.e. en-
crypting a block using a hash of the block as the key), recipes
would be applicable—as identical data are encrypted into
identical ciphertext, a recipe would again identify matching
blocks.

On the other hand, recipes easily coexist with data au-
thenticity. If data authenticity or non-repudiation is required,
a file will simply contain a message authentication code or
digital signature. As the authentication data are simply part
of the file, recipes describe them as well. Likewise, recipes
ensure data integrity. As a recipe provides strong crypto-
graphic checksums of a file’s contents, the user has a strong
guarantee of a file’s integrity when all its block checksums
match.

A recipe-based system should enforce access control re-
quirements for recipes that are identical to the requirements
for the corresponding files. Even though recipes contain
one-way hashes of file data, they still reveal information use-
ful to a malicious user who wishes to learn the file’s contents.
If an attacker has an old version of a file and the up-to-date
recipe for that file, he can compute many changed versions
of the old file by brute force, and use checksums from the

AB phase 100% 66% 33% 0% Baseline
MakeDir 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Copy 40.3 (0.9) 64.0 (0.8) 85.0 (0.8) 108.7 (0.5) 103.3 (0.5)
ScanDir 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.3 (0.5) 2.0 (0.0)
ReadAll 3.7 (0.5) 3.7 (0.5) 4.0 (0.0) 3.7 (0.5) 3.7 (0.5)

Make 15.3 (0.5) 16.0 (0.0) 15.7 (0.5) 16.0 (0.0) 15.7 (0.5)

Total 61.3 (0.9) 85.7 (1.2) 106.7 (0.5) 130.7 (0.5) 124.7 (0.5)

Modified Andrew Benchmark run at 1 Mb/s. Each column represents the hit-ratio on the jukebox. Times are reported in seconds
with standard deviations given in parentheses

Figure 8. Results: Modified Andrew Benchmark (1 Mb/s)

recipe to identify the correct version of the new file. To pre-
vent such attacks, CASPER assigns recipes identical permis-
sions to the files they summarize.

8 Future Extension: Fuzzy Block Matches

Our experimental results clearly show that at a given
bandwidth between client and server, the dominant factor in
determining the performance benefit afforded by CAS is the
block hit ratio at the jukebox. This relationship suggests that
strategies for increasing the hit ratio may improve the perfor-
mance of CAS-enabled storage systems. Toward this end, in
this section we propose fuzzy block matching, a promising
enhancement to CAS that is the topic of our continuing re-
search and implementation efforts.

The two recipe block types we have considered thus far,
fixed- and variable-length blocks, require exact matches
between a block’s hash in a recipe and a block’s hash at the
jukebox. Matching hashes prove, with extremely high prob-
ability, that the jukebox and “home” file server (which gen-
erated the recipe from the canonical instance of the file data)
hold the same data for a block. However, an inexact match
between block contents is also possible. Here, two blocks
may share many bytes in common, but differ in some bytes.
Fuzzy block matching allows a CAS client to request blocks
with the approximate contents it needs from a jukebox, and
to use these approximately matching blocks to reconstruct a
file so that its contents exactly match the canonical version
of the file.

One cannot simply use as-is a block whose contents only
approximately match those desired. The resulting recon-
structed file would differ from the canonical file stored at
the home server. After Lee et al. [17], we view a block at
a jukebox that approximately matches the desired block as
an errored version of the desired block, received through a
noisy channel. Lee et al. use error-correcting codes (ECCs)
to correct short replacements in similar disk blocks. We note
an analogous opportunity in CAS: if we could somehow cor-
rect the errors in the jukebox’s block, we could produce the
exact desired block.

Under fuzzy block matching, the specification of a block
in a recipe includes three pieces of information:

• An exact hash value that matches only the correct
block;

• A fuzzy hash value that matches blocks similar to the
correct block;

• Error-correcting information that, when applied to
a block similar to the correct block, may sometimes
recover the correct block.

While the hit-rate increase offered by fuzzy block match-
ing will improve with added error-correcting information,
we note that these three items must be compact in their to-
tal size. For recipes to be a viable mechanism, they must be
significantly smaller than the file contents themselves. We
expect that a few hundred bytes will suffice to hold useful
fuzzy hash values and error-correcting information.

Fuzzy block matching works as follows:

• The CAS client sends the jukebox the enhanced recipe
entry for a block, described above.

• The jukebox first determines whether it holds a block
whose hash matches the exact hash value; if so, it re-
turns this block to the client.

• The jukebox next uses the fuzzy hash value to find any
candidate blocks it holds that approximately match the
block sought by the client.

• The jukebox applies the error-correcting information
to each candidate block. If the corrected block’s hash
matches the exact hash value from the recipe, the juke-
box returns the corrected block to the client.

• If none of the jukebox’s candidate blocks can be cor-
rected to match the exact hash, the CAS client has
missed in the jukebox.

There are two algorithmic aspects to fuzzy block
matching: identifying approximately matching blocks with
fuzzy hashing, and error-correcting approximately matching
blocks, to recover correct block. We now sketch the tech-
niques we are pursuing to solve these two problems.

byte

Block length B

Shingle (k=3)

Figure 9. Structure of a disk block (length B) and shin-
gle (k contiguous bytes). Here, k = 3.

8.1 Fuzzy Hashing: Shingling

The well-known technique of shingling [5] efficiently
computes the resemblance of web documents to one another.
Douglis and Iyengar [10] apply shingling to identify simi-
lar data objects in a file system, so that one may be delta-
encoded in terms of the other. We briefly describe an adap-
tation of Broder et al.’s shingling to binary disk blocks in the
CAS context.

We assume variable-length blocks, whose boundaries are
determined by Rabin fingerprints over block contents, as de-
scribed in Section 3. Consider a block of length B bytes.
Define a shingle to be a sequence of k contiguous bytes in
a block. Shingles overlap; there are B− k + 1 shingles in a
block of length B bytes, one beginning at each of bytes zero
through B−k. Figure 9 shows a shingle within a disk block.
The horizontal arrows denote the “sliding” of the k-byte win-
dow within the block, to produce different shingles.

Compute a hash of each shingle in the disk block. Broder
et al. use an enhanced version of Rabin fingerprints [25] for
hashing, for reasons of computational efficiency. This pro-
cedure produces a set of integral shingle values. Sort these
shingle values into numeric order, and select the m smallest
unique values. These m values form a shingleprint, which
represents the approximate contents of the disk block. Es-
timating the resemblance of two blocks is a simple compu-
tation involving the number of their m shingle values they
share in common.

Under CAS, a shingleprint can be stored in a recipe as
the fuzzy hash of a block. A client presents the shingleprint
to a jukebox, which may use it to identify blocks similar to
the desired block.

8.2 Using Similar Blocks: ECCs

The essence of our approach is to divide a variable-
length disk block into fixed-length, non-overlapping sub-
blocks (the last subblock may be shorter than the others),
and to detect (possibly offset) subblocks that remain un-
changed in content after insertions, deletions, or replace-
ments in the full disk block. Subblocks that changed are
treated as errored. By targeting a specific maximum num-
ber of changed subblocks, we can store enough ECC infor-
mation to recover the original data for the whole block. In
this scheme, replacements, insertions, and deletions within
fixed-length blocks amount to corruptions of subblocks.

10 fingerprints

insertion

���
�

Client

Jukebox
2 ECC subblocks

���������������
���������������

������������������������ ����
��
	�	�		�	�		�	�	

�

�

�
���������������������
��������������������� ����

�������������������������������������� ����������
���������� ���������������

��
���������

���
�
���
�
���������
���
���
�

���
�
���
�

���
�

!�!!�!!�!
!�!
"�""�""�"
"�"

#�##�##�#
#�#
$�$$�$$�$
$�$

8/10 subblocks + 2 ECC subblocks 10 original subblocks

%�%�%�%%�%�%�%&�&�&&�&�& '�'�''�'�''�'�'
(�(�((�(�((�(�()�)�))�)�))�)�)

��**�*�**�*�*+�+�+�++�+�+�+,�,�,,�,�, -�-�--�-�-
.�.�..�.�. /�/�//�/�/

0�0�00�0�01�1�1�11�1�1�11�1�1�1
2�2�22�2�22�2�23�3�3�33�3�3�34�4�4�44�4�4�4

Recovering a correct block from an errored version stored at
a jukebox using ECC data: the jukebox scans for unchanged
subblocks, and uses them with ECC blocks to produce the
correct block.

Figure 10. Example of Similar Block Correction

Again working with a disk block of length B, let us de-
fine a fixed subblock length L, where L < B. The client’s
recipe includes a Rabin fingerprint for each subblock. When
the client requests similar blocks from a jukebox, it includes
these Rabin fingerprints over the subblocks in the request.

For each candidate block it holds, the jukebox scans for
the subblock Rabin fingerprints it receives from the client.
By “scan,” we mean that the jukebox computes a Rabin fin-
gerprint on every subblock in the candidate block, scanning
each contiguous region of length L. As described previously,
Rabin fingerprints are computationally efficient to compute
in a sliding window at every offset in a block of data. Even
if the candidate block contains insertions, deletions, and re-
placements, it is likely that it will contain subblocks identical
to subblocks of the correct block.

An example of this ECC procedure is provided in Fig-
ure 10. Here, the client desires a disk block, subdivided
into ten subblocks. The client stores in its recipe the Ra-
bin fingerprint for each of these ten subblocks. It also stores
two ECC subblocks, each 128 bytes long, originally derived
from the block’s canonical contents. Let us assume that the
jukebox has a candidate block found by shingling, but that
contains an insertion of length shorter than one subblock.
The jukebox computes the Rabin fingerprint for each con-
tiguous 128-byte subblock of the candidate block, and iden-
tifies those subblocks whose Rabin fingerprints match those
provided by the client; these subblock correspondences be-
tween the correct block and jukebox block are shown by
vertical dashed arrows in Figure 10. Thereafter, the juke-
box applies the ECC to these unchanged subblocks and the
two ECC blocks, and overcomes the “erasure” of the modi-
fied subblock, to produce the exact desired block. As a final
check, the jukebox computes an exact-match hash over the
whole corrected block, and compares it with the exact-match
hash requested by the client. We assume here that we’ve
chosen an ECC robust to loss of two subblocks out of ten; in
practice, the degree of redundancy chosen for the ECC will
reflect the degree of difference between blocks from which
one wishes to recover successfully. One pays for increased
robustness to changes in a candidate block with increased
storage for ECC blocks in recipes.

In Figure 11, we detail the size of the four per-block
components of recipes in the prototype implementation of
fuzzy block matching we are currently developing. The pro-
totype uses variable-sized blocks of mean size 4K, and sub-
blocks 128 bytes in length. The SHA-1 exact-match hash

Content Total Size (bytes)
SHA-1 exact hash 20

Shingleprint fuzzy hash 80
Subblock Rabin fingerprints 256

ECC information 256

Average per-block recipe storage cost in prototype support-
ing fuzzy block matching on variable-sized blocks (4KB mean
block size).

Figure 11. Fuzzy Block Matching Recipe Storage

requires 20 bytes of storage. The shingleprint fuzzy hash
consists of ten 64-bit Rabin fingerprints. The subblock fin-
gerprints (which are also computed as Rabin fingerprints)
require 64 bits each. Finally, our prototype includes two
128-byte ECC subblocks per block, and can thus success-
fully reconstruct a desired block from a similar block that
differs in up to two 128-byte subblocks. The total recipe
storage per block is 612 bytes, about 15% the size of a 4K
block, but an order of magnitude longer than an exact-match
SHA-1 hash alone. We note that this storage cost is con-
servative; fuzzy block matching with less recipe storage per
block should be achievable. Truncating the Rabin finger-
prints used in the shingleprint and per-subblock from 64 bits
to 32 bits would reduce the storage requirement to 444 bytes,
or 10.8% the size of a 4K block. Truncating these finger-
prints increases the likelihood of collisions in fingerprint val-
ues, which can cause shingling to overestimate resemblance,
and cause subblocks to be falsely identified as matching. Be-
cause the whole-block hash is always verified before return-
ing a corrected block to a client, however, these collisions
do not compromise the correctness of fuzzy block matching.
Measuring the increase in hit rate afforded by fuzzy block
matching is the subject of our continuing research.

9 Conclusion

In this paper, we have introduced the file recipe abstrac-
tion. File recipes are useful synopses of file contents that
may be treated as first-class objects. Using this abstrac-
tion, we enhanced a distributed file system to retrieve file
data from nearby Content Addressable Storage opportunis-
tically. In cases where the network path between a client and
its home file server offers low bandwidth, the resulting dis-
tributed file system, CASPER, offers significantly improved
performance over a traditional Coda installation.

The efficiency of CASPER depends directly on the abil-
ity of the system to locate data blocks on CAS providers.
Preliminary measurements of the overlap in data blocks
across revisions of the Linux kernel sources and Mozilla
nightly binary releases show significant commonality, even
between non-consecutive pairs of releases. Finally, our on-
going work on a Fuzzy Block Matching algorithm holds
promise for improving the data-block hit rate by using ap-
proximately matching blocks from CAS providers to recon-
stitute the exact desired contents of a file.

Acknowledgments

We would like to thank Jason Flinn and Shafeeq Sin-
namohideen for their help and feedback with the design of
CASPER, and Casey Helfrich for his help in setting up the
test machines. We have benefited greatly from the work of
Jan Harkes, Peter Braam and many other past contributors
to Coda. Our shepherd, Amin Vahdat, and the anonymous
reviewers gave valuable feedback and many suggestions for
improving the paper. All unidentified trademarks used in this
paper are properties of their respective owners.

References
[1] ADYA, A., BOLOSKY, W. J., CASTRO, M., CERMAK, G.,

CHAIKEN, R., DOUCEUR, J. R., HOWELL, J., LORCH, J. R.,
THEIMER, M., AND WATTENHOFER, R. P. FARSITE: Federated,
Available, and Reliable Storage for an Incompletely Trusted Environ-
ment. In Proceedings of 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02) (December 2002).

[2] BOLOSKY, W. J., CORBIN, S., GOEBEL, D., , AND DOUCEUR,
J. R. Single Instance Storage in Windows 2000. In Proceedings of
the 4th USENIX Windows Systems Symposium, pages 13–24. Seattle,
WA (August 2000).

[3] BOLOSKY, W. J., DOUCEUR, J. R., ELY, D., AND THEIMER, M.
Feasibility of a Serverless Distributed File System Deployed on an
Existing Set of Desktop PCs. ACM SIGMETRICS Performance Eval-
uation Review, 28(1):34–43 (2000). ISSN 0163-5999.

[4] BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., AND MALER,
E. Extensible Markup Language (XML) 1.0 (Second Edition) (Octo-
ber 2000). http://www.w3.org/TR/REC-xml.

[5] BRODER, A., GLASSMAN, S., MANASSE, M., AND ZWEIG, G.
Syntactic Clustering of the Web. In Proceedings of the 6th Interna-
tional WWW Conference (1997).

[6] CLARKE, I., SANDBERG, O., WILEY, B., AND HONG, T. W.
Freenet: A Distributed Anonymous Information Storage and Retrieval
System. Lecture Notes in Computer Science, 2009:46+ (2001).

[7] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche: Making
Backup Cheap and Easy. In OSDI: Symposium on Operating Systems
Design and Implementation (2002).

[8] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND
STOICA, I. Wide-Area Cooperative Storage with CFS. In Proceed-
ings of the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01). Chateau Lake Louise, Banff, Canada (October 2001).

[9] DOUCEUR, J. R., ADYA, A., BOLOSKY, W. J., SIMON, D., AND
THEIMER, M. Reclaiming Space from Duplicate Files in a Server-
less Distributed File System. In Proceedings of 22nd International
Conference on Distributed Computing Systems (ICDCS 2002) (July
2002).

[10] DOUGLIS, F. AND IYENGAR, A. Application-specific Delta-
encoding via Resemblance Detection. In Proceedings of the USENIX
Annual Technical Conference. San Antonio, Texas (June 2003).

[11] DRUSCHEL, P. AND ROWSTRON, A. PAST: A Large-Scale, Persis-
tent Peer-to-Peer Storage Utility. In HotOS VIII, pages 75–80. Schloss
Elmau, Germany (May 2001).

[12] FLINN, J., SINNAMOHIDEEN, S., TOLIA, N., AND SATYA-
NARAYANAN, M. Data Staging on Untrusted Surrogates. In Proceed-
ings of the FAST 2003 Conference on File and Storage Technologies
(2003).

[13] HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYA-
NARAYANAN, M., SIDEBOTHAM, R., AND WEST, M. Scale and
Performance in a Distributed File System. ACM Transactions on Com-
puter Systems, 6(1) (February 1988).

[14] HOWES, T. A. AND SMITH, M. C. A Scalable, Deployable, Direc-
tory Service Framework for the Internet. Technical report, Center for
Information Technology Integration, Univerity of Michigan (1995).

[15] KIM, M., COX, L. P., AND NOBLE, B. D. Safety, Visibility and
Performance in a Wide–Area File System. In Proceedings of the FAST
2002 Conference on File and Storage Technologies. Monterey, CA
(January 2002).

[16] KOZUCH, M. AND SATYANARAYANAN, M. Internet Sus-
pend/Resume. In Fourth IEEE Workshop on Mobile Computing Sys-
tems and Applications. Callicoon, New York (June 2002).

[17] LEE, Y.-W., LEUNG, K.-S., AND SATYANARAYANAN, M.
Operation-based Update Propagation in a Mobile File System. In
Proceedings of the USENIX Annual Technical Conference. Monterey,
California (June 1999).

[18] MOGUL, J. C., DOUGLIS, F., FELDMANN, A., AND KRISHNA-
MURTHY, B. Potential Benefits of Delta Encoding and Data Com-
pression for HTTP. In SIGCOMM, pages 181–194 (1997).

[19] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A Low-
Bandwidth Network File System. In Proceedings of the 18th ACM
Symposium on Operating Systems Principles. Chateau Lake Louise,
Banff, Canada (October 2001).

[20] MUTHITACHAROEN, A., MORRIS, R., GIL, T., AND CHEN, B. Ivy:
A Read/Write Peer-to-peer File System. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI ’02). Boston, Massachusetts (December 2002).

[21] NAGLE, J. RFC 896: Congestion Control in IP/TCP Internetworks
(January 1984).

[22] NIST. Secure Hash Standard (SHS). In FIPS Publication 180-1
(1995).

[23] NIST Net. http://snad.ncsl.nist.gov/itg/nistnet/.
[24] QUINLAN, S. AND DORWARD, S. Venti: A New Approach to

Archival Storage. In Proceedings of the FAST 2002 Conference on
File and Storage Technologies (2002).

[25] RABIN, M. Fingerprinting by Random Polynomials. In Harvard
University Center for Research in Computing Technology Technical
Report TR-15-81 (1981).

[26] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A Scalable Content Addressable Network. In Pro-
ceedings of ACM SIGCOMM 2001 (2001).

[27] RIVEST, R. The MD5 Message-Digest Algorithm. RFC 1321 (1992).
[28] ROWSTRON, A. AND DRUSCHEL, P. Pastry: Scalable, Distributed

Object Location and Routing for Large-Scale Peer-to-Peer Sys-
tems. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware). Heidelberg, Germany
(November 2001).

[29] RPM Software Packaging Tool. http://www.rpm.org/.
[30] SAITO, Y., KARAMANOLIS, C., KARLSSON, M., AND MA-

HALINGAM, M. Taming Aggressive Replication in the Pangaea Wide-
Area File System. In OSDI: Symposium on Operating Systems Design
and Implementation (2002).

[31] SATYANARAYANAN, M., EBLING, M. R., RAIFF, J., BRAAM, P. J.,
AND HARKES, J. Coda File System User and System Administrators
Manual. Carnegie Mellon University (1995).

[32] SATYANARAYANAN, M., KISTLER, J., KUMAR, P., M.E., O.,
SIEGEL, E., AND STEERE, D. Coda: A Highly Available File Sys-
tem for a Distributed Workstation Environment. IEEE Transactions
on Computers, 39(4) (April 1990).

[33] SATYANARAYANAN, M. The Evolution of Coda. ACM Transactions
on Computer Systems, 20(2) (May 2002).

[34] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M.F., BAL-
AKRISHNAN, H. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proceedings of the ACM SIGCOMM 2001.
San Diego, CA (August 2001).

[35] SYSINTERNALS. http://www.sysinternals.com.
[36] TICHY, W. F. RCS - A System for Version Control. Software - Prac-

tice and Experience, 15(7):637–654 (1985).
[37] TRIDGELL, A. Efficient Algorithms for Sorting and Synchronization.

Ph.D. thesis, The Australian National University (1999).
[38] Universal Plug and Play. http://www.upnp.org/.

