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Abstract

Efficient access to bulk data over the Internet has become a critical
problem in today’s world. Even while bandwidth, both in the core and the
edge of the network, is improving, the simultaneous growth in the use of
digital media and large personal data sets is placing increasing demands
on it. Further, with increasing trends towards mobility, an increasing
amount of data access is over cellular and wireless networks. These trends
are placing pressure on applications and the Wide-Area Network (WAN)
to deliver better performance to the end user.

This dissertation puts forward the claim that external resources can
be used in an opportunistic manner to optimize bulk data transfer in
WAN-based client-server systems. In particular, it advocates the use of
content-addressable techniques, a system-independent method for naming
objects, to cleanly enable these optimizations. By detecting similarity
between different data sources, these techniques allow external sources to
be used without weakening any attributes, including consistency, of legacy
systems and with no or minor changes to the original system.

This dissertation validates this claim empirically through the use of five
case studies that encompass the two traditional forms of data storage, file
systems and database systems, and then generalizes the claim in the form
of a generic transfer service that can be shared by different applications.
In each of these case studies, I focus on three questions. First, even
with the addition of content-based optimizations, how does the resulting
system still maintain the attributes and semantics of the original system?
Second, how do these systems efficiently find similarity in data? Third,
does the use of these content-addressable techniques provide a substantial
performance improvement when compared to the original system? These
questions are answered with a detailed description of the system design
and implementation and a careful evaluation of the prototypes with both
synthetic and real benchmarks.
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Chapter 1

Introduction

Today, users have an increasing number of options available for accessing the Inter-

net. These choices include wired networks such as DSL, Fiber, and Cable, wireless

networks such as 802.11 variants and WiMax, and cellular networks such EVDO,

GPRS/EDGE, and UMTS. This increased availability has led users to expect ac-

cess to their data anywhere and at any given point in time. However, even though

the capacity of these networks has improved over the years, network usage has also

grown in proportion. There are also large differences in the available bandwidth of

these networks. For example, users will see a stark performance difference when they

transition from a wired network to a cellular one. In addition, while the amount

of per-capita manually generated content has remained relatively constant over the

years, the growth in machine-generated data has exploded [2, 90]. Examples of such

data include digital audio and video, health-related imaging, and increasing amounts

of automatically generated data residing in relational databases.

These trends have placed increased pressure on applications and the Wide-Area

Network (WAN) to deliver better performance to the end user. Even though the

wired cores of most networks tend to be well-provisioned, the edges of the WAN or

the “last-mile” access links frequently become a bottleneck. However, in a number of

situations, there are alternatives to using the bottleneck link. For example, if sharing

exists between different systems, users, or groups, the required data might be found

on another user’s machine. If the user has downloaded similar data in the past, a

significant fraction of the required data might be found on the user’s portable storage

devices or the computer’s hard drive and only the non-duplicated portions would need

1



to be fetched over the WAN. External data sources can also prove to be very useful

if the original sender is overloaded.

This dissertation describes how such external resources can be used in an op-

portunistic manner to optimize bulk data transfer in WAN-based client-server sys-

tems. In particular, it advocates the use of content-addressable techniques, a system-

independent method of naming objects, to cleanly enable these optimizations. In

this chapter, Section 1.1 first looks at why applications face difficulties in exploiting

external data sources. Section 1.2 describes the thesis statement. Section 1.3 follows

with a primer on content-addressable techniques. Section 1.4 provides a road map

for the rest of the dissertation.

1.1 Identity in Data Transfer

Today, data objects are named by the system that stores them and these names are

only guaranteed to be unique within that particular system. For example, a file within

a file system is identified by a pathname. There is value in user-defined naming as the

names can have mnemonic significance. However, files stored in different file systems

can have identical pathnames but completely different contents. Thus, system or

user-defined names are not guaranteed to be globally unique. Further, even these

names are lost once files are copied out of the file system by applications. Consider

the case when a user emails a file stored on her local file system to a colleague. The

recipient might make minor edits, renames the file to reflect the edits, and send it back

to the sender. While a large fraction of the content between the original and edited

file might be similar, the sending and receiving machines have no obvious method to

detect the link between the two files and detect similarity. Thus the file will be need

to be transferred over the Internet in its entirety.

Securely assigning global names to objects usually requires centralization or com-

plex distributed coordination mechanisms. Implementing either of these solutions

would create new scalability, security, and performance challenges. The absence of

global names prevents out-of-band optimizations of bulk data transfers. For example,

during actual transfers, objects might be defined only as a part of the protocol’s con-

trol flow. As a result, data transfers become very tightly coupled to the application’s

control channel and sometimes to the particular TCP/IP connection the control chan-
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nel is operating on. This prevents optimizations such as the use of parallel TCP over

high bandwidth-delay networks, using multi-path when multiple network interfaces

are available, or even the use of portable storage.

In theory, these techniques as well as the various data transfer optimizations

shown in Figure 1.1 could be individually incorporated within individual applications.

However, this requires significant developer effort, access to the application’s source

code, and the ability to modify the standards that define the application’s protocol.

While application-specific edge caches can ameliorate this problem to a certain extent,

they are not generic solutions and require a deep understanding of every application

protocol being optimized. Further, even application-specific optimizations will be

unable to make opportunistic use of all resources available in the environment. For

example, if two users in the same office receive the same file via separate transfer

mechanisms such as email (over the SMTP protocol) and the web (over the HTTP

protocol), they will fetch two copies over the WAN. Exploiting secondary data sources

such as portable storage is even harder.

1.2 Thesis Statement

This thesis states that:

Using Content-Addressable Techniques to identify bulk data can sig-

nificantly improve performance for both legacy and future client-server

systems. These techniques allow external data sources to be used with-

out weakening any attributes, including consistency, of legacy systems

and with no or minor changes to the original system.

1.3 Using Content-Addressable Techniques

In order to uniquely identify data, this dissertation advocates the use of content-

addressable techniques. Unlike conventional naming methods, these techniques use

cryptographic hashes to name data in a unique and self-identifying manner without re-

quiring a central authority or global communication. As these names are self-verifying,
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The technologies illustrated above include P2P systems [43, 44, 61, 101], Distributed
Hash Tables (DHTs) [112, 115, 120, 140], CAS-based systems [91, 114, 117, 149],
portable storage based file systems [96, 136, 150, 160], and optimizations based on
in-network storage [19, 58, 75].

Figure 1.1: Examples of Different Techniques for Improving Bulk Data Transfer

they allow external data sources and a variety of different transfer techniques to be

used in an opportunistic manner to improve transfer speeds.

The use of content-addressable techniques allows systems to leverage the client’s

increasingly powerful CPUs and increasingly large storage capacities to compensate

for weak connectivity. In comparison to the cost of network transfers, modern CPUs

reduce the cost of generating cryptographic hashes to a negligible amount. Large

local storage capacities allow systems to cache previous transfers and store substantial

amounts of data for opportunistic use without impacting normal usage.

The cryptographic hash functions used by these techniques map any arbitrary

finite length input to a fixed length output (the hash value). Further, for any given

input, the hash value is easy to compute. While more details are provided by Menezes

et al. [85], these functions generally have the following properties:

• One-Way: Given an output, it is computationally infeasible to find any input

that hashes to it.

• Weak Collision Resistance: Given an input, it is computationally infeasible

to find a second input that has the same hash output.

• Strong Collision Resistance: It is computationally infeasible to find any two

distinct inputs that hash to the same output.

4



The work described in the following chapters assumes that the original source of

data is trusted. The source is depended upon to provide the hash values that were

generated from the object to be transferred. The “weak” collision resistance property

allows this work to assume that the given hash value can serve as a unique identifier

for that input. Therefore, if two hash values are equal, so are the source objects

they were generated from. This property has the advantage that it breaks a client’s

dependence on the original data source. Further, these content-based hashes are also

self-verifying. Any data received from an untrusted source can simply be rehashed

and the new hash value compared to the one fetched from the trusted source. As it

is computationally infeasible to find a second input that has the same hash output,

if the original and new hash values match, data authenticity is assured.

Although concerns about the collision-resistance assumption of CAS have been

expressed [67], this dissertation believes that they are not an issue because of the

reasons outlined in the rebuttal by Black [22]. Collisions for cryptographic hash func-

tions have an extremely low probability. For a 160-bit hash function, the probability

of hash collision is 2−160. As the trusted source generates the hash values, this work

is immune to birthday attacks. Even with a birthday attack, in terms of computa-

tional effort, the number of operations required to generate a hash collision would

be 2−80. Further, this dissertation does not depend critically on any specific hash

function. Replacing a given hash function used with a different one would be simple.

No re-hashing of permanent storage would be required since hash functions are only

used on volatile data and never for addressing persistent data. While a much stronger

function such as SHA-256 [129] would increase computational effort at the client and

server, the increased overhead is very modest and the length of the hash values would

still be much smaller than the objects they represent.

1.4 Dissertation Road Map

I believe that the use of content-addressable techniques is a simple yet powerful op-

timization that can significantly improve performance. To validate the thesis, this

dissertation will empirically demonstrate how these techniques apply to a broad cat-

egory of systems. In particular, it will examine the two predominant and widely-used

forms of high-level storage: distributed file systems and databases. Building upon
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this work with legacy storage systems, I will then generalize the lessons learned and

propose a new architecture for future systems and applications that perform Internet

data transfers.

In all of these systems, content-addressable techniques will be used in an oppor-

tunistic manner and solely as a performance improvement. No assumptions are made

as to the existence of similarity and, for the targeted environments, its absence should

provide performance that is equivalent to the original system.

When describing these systems, the focus will be on the following design aspects:

• Achieving Transparency: Even with the addition of content-based optimiza-

tions, how does the resulting system still maintain the attributes and semantics

of the original system? Two forms of transparency are explored. The first allows

the introduction of these optimizations without any modifications required to

either the legacy system or applications. The second allows minor modifications

to the legacy system but requires that no application modifications be made.

• Detecting Similarity: How do the new systems efficiently find similarity in

data? Where does this similarity arise from and how is it used? Does detecting

similarity involve the use of domain-specific information or can it be generic?

• Performance Improvement: What are the potential benefits from using

content-addressable techniques and what workloads might benefit from these

systems? Further, what are the potential overheads of using these systems when

no similarity is detected by the system or when operating in environments they

are not targeted towards?

First, in Chapter 2, I demonstrate the ease with which external networked data

repositories can be opportunistically used to optimize the performance of the CASPER

distributed file system [149]. These external repositories can be set up completely

independently of the original distributed file system. Further, no explicit cache-

coherence protocol is required to maintain consistency as the repositories are ad-

dressed using content identifiers fetched from the authoritative file server. If updates

occur on the server, any stale data in the repository will simply no longer be refer-

enced.
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I then extend these ideas in Chapter 3 to leverage non-networked data sources,

such as portable storage, through the use of Lookaside Caching [150]. Lookaside

caching, a powerful and versatile technique, uses CAS to combine the strengths of

distributed file systems and portable storage devices, while negating their weaknesses.

By unifying distributed storage and portable storage into a single abstraction, it allows

users to treat devices they carry as merely performance and availability assists for

distant file servers. Careless use of portable storage has no catastrophic consequences.

Both the CASPER and lookaside caching systems optimize the performance of

distributed file systems. When objects change, it is usually due to in-place updates,

deletions, and insertions. These systems are also characterized by relatively large

opaque objects. Further, as consistency is usually maintained at a per-object level,

injecting CAS-based optimizations was also relatively straightforward. The question

arises as to whether the thesis statement holds for systems that have different up-

date patterns, smaller objects, and stricter consistency requirements. In answer, this

dissertation next discusses the thesis in the context of database systems.

Chapter 4 examines how CAS can be useful in multi-tiered architectures where

dynamic web content is generated from relational databases. I describe a middleware

layer called Ganesh [148] that reduces the volume of data transmitted without seman-

tic interpretation of queries or results. It achieves this reduction through the use of

cryptographic hashing to detect similarities with previous results. These benefits do

not require any compromise of the strict consistency semantics provided by the back-

end database. Further, Ganesh does not require modifications to applications, web

servers, or database servers, and works with closed-source applications and databases.

Chapter 5 then examines how CAS can be useful in exploiting stale data replicas.

It presents Cedar [152], a system that enables mobile database access with good

performance over low-bandwidth networks. This is accomplished without degrading

consistency. Cedar exploits the disk storage and processing power of a mobile client

to compensate for weak connectivity. Its central organizing principle is that even a

stale client replica can be used to reduce data transmission volume from a database

server. The reduction is achieved by using content addressable storage to discover

and elide commonality between client and server results. This organizing principle

allows Cedar to use an optimistic approach to solving the difficult problem of database

replica control.
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Finally, I generalize the lessons learned from creating the above systems in the

creation of DOT, a generic transfer service [151]. DOT, described in Chapter 6, spec-

ifies a flexible architecture for Internet data transfer. Through the use of CAS, this

architecture allows a clean separation of content negotiation from the data transfer.

Applications determine what data they need to send and then use a transfer service to

send it. This transfer service acts as a common interface between applications and the

lower-level network layers, facilitating innovation both above and below. The transfer

service frees developers from re-inventing transfer mechanisms in each new applica-

tion. New transfer mechanisms, in turn, can be easily deployed without modifying

existing applications.

Related Work is discussed in Chapter 7. Chapter 8 concludes with a summary of

the contributions of this dissertation and outlines possible areas for continuing this

work.
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Chapter 2

Opportunistic Use of Networked

Storage for Distributed File

Systems

2.1 Introduction

This chapter shows how networked data sources can be opportunistically used to

improve the performance of legacy distributed systems. In particular, it examines

the use of POSIX-style distributed file systems such as NFS, AFS, Coda, and CIFS.

However, there has always been a significant gap between the user experience on a

WAN versus a much faster Local Area Network (LAN). As WAN links are usually

characterized by low bandwidth and high latency, one of the main performance bot-

tlenecks is the cost of fetching large amounts of data over a WAN link. While caching

can alleviate this problem to some extent, these techniques do not help in retrieving

updates or new data. In particular, this chapter examines how the performance of

legacy distributed file systems can be improved by using Content Addressable Storage

(CAS) but without weakening any attributes of the original system.

The use of CAS in this scenario is totally opportunistic. The file system does

not depend on CAS providers for correct working behavior and does not change

the naming, consistency, and write-sharing semantics associated with the file system.

CAS providers are only used to accelerate read performance and the central file server
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is the sole authority with respect to file content, access control, naming, etc. In fact,

the use of CAS is completely transparent to both users and applications. The failure

or absence of CAS providers only affects performance with files having to be fetched

across the WAN.

Central to the integration of distributed file systems and CAS is the concept of a

recipe. A recipe for a file is a synopsis of the data in terms of discrete blocks with each

block being identified by a cryptographic hash of the contents in the block. Thus,

given the data blocks from a CAS provider, one can reconstruct the file corresponding

to the recipe description. In this way, recipes would be very useful for low-bandwidth

networks where a client, only able to fetch the recipe across the WAN, could then

use available CAS providers on a LAN to reconstruct the file. As a recipe’s content-

addressable description is of finer granularity than a whole-file hash, if only parts of

files are found on a CAS provider close to the client, the rest can be fetched across the

WAN. The concept of using a recipe will also be used in the other systems describe

in this dissertation.

There are a number of different entities that can serve as CAS providers. CAS

providers can be organized peer-to-peer networks, such as Chord [140] and Pas-

try [120]. In some environments, a system administrator may prefer to dedicate

one or more machines as CAS providers. Such a dedicated CAS provider, such as

EMC’s Centera [55], is referred to in this work as a jukebox. CAS providers may also

be impromptu systems. For example, each desktop on a LAN could be enhanced with

a daemon that provides a CAS interface to its local disk. With such an arrangement,

system administrators can offer CAS access without being forced to abide by any

peer-to-peer protocol or provide additional storage space. The CAS interface used by

jukeboxes can be extremely simple; just two calls, explained in more detail in Sec-

tion 2.3, (Multi)Query and (Multi)Fetch are used. In particular, CAS providers

need not make any guarantees regarding content persistence or availability.

The prototype distributed file system that has been implemented using the recipe

paradigm is called CASPER. The novel aspect of CASPER is that clients make

opportunistic use of nearby CAS providers to improve performance and scalability.

The functionality of the system has been tested by evaluating it on a set of standard

benchmarks at different bandwidths and latencies. The results from these experiments

show that substantial performance improvement is possible by using recipes in low-

bandwidth and high latency scenarios.
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A detailed explanation of recipes and their utility in detecting similarity is pre-

sented in Section 2.2. The CASPER approach to preserving transparency to the

legacy distributed file system, applications, and users is then described in Section 2.3.

This is followed by CASPER’s performance evaluation in Section 2.4. Section 2.5 con-

cludes with a summary of this chapter’s findings.

2.2 Detecting Similarity

This section first describes recipes, a critical component in CASPER’s approach to

detecting similarity. Next, it briefly examines the amount of similarity the CASPER

file system might find among different workloads.

2.2.1 Recipes

Recipes form the central core of the CASPER file system. A recipe for a file is

a description of each constituent content addressable block belonging to the file.

Examples of these descriptions include breaking up a file into fixed size 4 KB blocks

or into variable sized chunks based on some deterministic algorithm. Each block of

the file is identified in the recipe by a cryptographic hash such as SHA-1 [128], SHA-

256 [129], etc. Thus, given a file’s recipe, the file can be reconstructed by fetching the

data with the same hash signature and combining the individual blocks in the order

specified by the recipe.

Recipes allow multiple descriptions of a file to be present in the same recipe. This

allows the users of the recipe to pick whatever representation is best suited or choose

a combination of them to get the best possible performance. For portability reasons,

recipes are described in XML (Extensible Markup Language) [26]. An example of a

recipe is given in Figure 2.1. The recipe is representative of a file named casper.pl

that is 125,637 bytes long. Apart from the hashes, additional metadata such as the

last modified time and other file system specific information has been inserted at the

beginning of the recipe. This inserted metadata is specific to CASPER and allows

it to maintain recipe consistency and detect errors. Naturally, this section can be

tailored to the needs of other applications that might choose to use recipes.

The metadata section is followed by three different descriptions, or recipe choices,
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0 <?xml version="1.0"?>
1 <recipe type="file">
2 <metadata>
3 <length>125637</length>
4 <last_modified>11/12/2002 16:24:37</last_modified>
5 <file_system type="Coda">
6 <name>/coda/projects/shared/casper.pl</name>
7 <fid>312567 0 678</fid>
8 <version>6 7 3 4 9</version>
9 </file_system>

10 </metadata>
11
12 <recipe_choice>
13 <hash_list hash_type="SHA-1" block_type="fixed" fixed_size="4096"
14 number="31">
15 <hash>09d2af8dd22...</hash>
16 <hash>e5fa44f2b31...</hash>
17 .
18 .
19 </hash_list>
20 </recipe_choice>
21
22 <recipe_choice>
23 <hash_list hash_type="SHA-1" block_type="variable" number="36">
24 <hash size="3576">7448d8798a4...</hash>
25 <hash size="1278">a3db5c13ff9...</hash>
26 .
27 .
28 </hash_list>
29 </recipe_choice>
30
31 <recipe_choice>
32 <hash_list hash_type="SHA-256" block_type="fixed" fixed_size="125637"
33 number="1">
34 <hash>9c6b057a2b9...</hash>
35 </hash_list>
36 </recipe_choice>
37 </recipe>

Figure 2.1: Example of a File Recipe
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that represent the contents of the file. The first choice (lines 12-20) displays a list

of SHA-1 hashes describing 4 KB fixed size blocks. In fact, as the 31 4 KB blocks

describe an object slightly greater than the length defined in the metadata section,

the reconstructed object will have to be truncated to the correct length. The next

description (lines 22-29) is a list of SHA-1 hashes of variable-length blocks. Such

variable sized blocks could be generated, for example, by employing Rabin finger-

prints [108, 137] to find block boundaries. This description again describes the entire

file. The third and final example (lines 31-36) of a description is a single SHA-256

hash of the entire file. As this is a special case of variable sized blocks, the hash could

be used to request the entire file as a single block of data. If any of the previous

recipe choices are used to reconstruct the file, the single hash can also be used to

ensure integrity.

The different choices described above allow the user some flexibility in selecting

between CAS providers. For example, if the only available CAS provider exports

fixed-sized 4 KB blocks, the user could select the first choice. On the other hand, if

different CAS providers are available that provide both fixed as well as variable sized

blocks, a user could potentially use one of them for the majority of the requests and

use the others to satisfy requests for data that wasn’t found in the first.

CASPER currently supports recipes containing variable-sized blocks discovered

using Rabin fingerprinting, fixed-sized blocks, and whole file-hashes. However, it pre-

dominantly uses Rabin fingerprinting because of its effectiveness in finding similarity

in opaque objects.

2.2.2 Commonality Measurements

The performance improvement seen from using CASPER is highly dependent on the

commonality in data between the file server and the CAS providers. Further, the

degree of commonality is expected to depend on the applications that are trying

to exploit it. Some applications, like the Virtual Machine (VM) migration bench-

mark used in the evaluation, would be well-suited to a CAS-based approach. This

benchmark reconstructs the data, including common operating system and applica-

tion code, found on typical disk drives. A detailed examination of usage data from a

VM-based client management system [94] along with prior work [24, 46] showed that

a high degree of commonality can be expected for this application.
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Commonality may also be expected when retrieving common binary or source-

code distributions. For a software developer, different versions of a source tree seem

to exhibit this trend. For example, the commonality between various releases of the

Linux kernel source code was compared. Figure 2.2 shows the measured commonality

between versions of the Linux 2.2 and 2.4 kernels. For this study, the definition of

commonality is the fraction of unique variable-sized blocks in common between pairs

of releases. The block-extraction algorithm used in CASPER was applied to each

kernel’s source tree and the unique hashes of all blocks in the tree were collected.

The set of hashes derived from each release was then compared to the set of hashes

derived from each previous release in its series. The results show that commonality

of 60% is not uncommon, even when the compared source trees are several versions

apart. The minimal commonality observed is approximately 30%. As shown later

in Section 2.4.4 even this degree of commonality can lead to significant performance

benefits from CAS in low-bandwidth conditions. The commonality differences shown

between different releases can be attributed to both in-situ changes in code as well

as the addition of new code.

As small changes accumulate in source code over time, the corresponding compiled

binary will diverge progressively more in content from earlier binaries. To assess how

commonality in binaries changes as small source-level changes accumulate, the nightly

Mozilla binary releases from March 16th, 2003 to March 25th, 2003 were examined.

The measurements from this analysis are presented in Figure 2.3. I believe that

these changes are representative of the effect of applying security or performance

patches to an application. Nightly binaries, on average, share 61% of their content

in common with the binary of the preceding revision. In the worst case, where the

CAS jukebox only has the binary from March 16th, but the client desires the binary

from the 25th, a commonality of 42% is observed. The same analysis on major

Mozilla releases observed significantly less commonality for those binaries because of

the significant changes in code and functionality between releases. One interesting

exception concerned the 1.2.1 release, a security fix; this release had 91% commonality

with the previous one.

While these measurements of cross-revision commonality for both source code and

binaries are promising, they are somewhat domain-specific. The degree of common-

ality in users’ files bears future investigation. Highly personalized or sensitive data

is unlikely to be shared between multiple users. But there may be cases where users
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Figure 2.2: Linux Kernel Commonality
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share data, such as email attachments sent to many other users in the same organi-

zation. While a detailed study of cross-user commonality is beyond the scope of this

work, its existence has been quantified by others [23, 77, 104]. Further, as shown in

Section 2.4, CASPER offers performance improvements over low-bandwidth connec-

tions even in the presence of relatively little commonality. Moreover, on WANs, the

overhead of not finding the required data on CAS providers is small.

2.3 Achieving Transparency

The CASPER prototype is derived from the Coda distributed file system [73, 124]

and therefore caches data at a whole-file granularity to provide Coda’s file-session

oriented, open-close consistency model. To maintain transparency to the legacy Coda

file system, applications, and users, CASPER has adopted a modular, proxy-based

layering approach. As CASPER is solely a performance optimization, it relies on the

Coda file servers to guarantee data persistence and file consistency.

Figure 2.4 depicts the organization of the CASPER system. The Coda client and

Coda server modules are unmodified releases of the Coda client and server, respec-

tively. The Proxy module is responsible for intercepting communication between the

client and server and determining whether or not to activate CASPER’s CAS func-

tionality. The Coda client and proxy together act as a CASPER client. Likewise,

the Coda file server and Recipe Server together act as a CASPER server. The recipe

server is the component responsible for generating replies to recipe requests.

The proxy-based design enabled the prototyping of new file-system features such

as the CAS-based performance enhancements without modifying Coda. In this design,

the proxy provides the client with an interface identical to the Coda server interface.

The proxy can monitor network conditions and determine when to use an available

CAS provider. Under good networking conditions, the CASPER system behaves

identically to an unmodified Coda installation without the proxy. After detecting low

bandwidth network conditions, however, the proxy registers with the recipe server

and a CAS provider. The provider in this example is a jukebox. As explained earlier,

a jukebox is a dedicated server that acts as a CAS provider.

While low-bandwidth conditions persist, the proxy intercepts all file requests from

the client and asks for the corresponding recipe from the recipe server. The recipe
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Figure 2.4: CASPER System Diagram

server is responsible for generating a recipe for the current version of the file and

delivering it to the proxy. Using the hashes contained in the recipe, the proxy then

attempts to retrieve the data blocks named in the file from nearby CAS providers

(including the client’s own file cache). The proxy will then request any blocks not

found on the CAS providers from the recipe server. Once reconstruction is complete,

the file is passed back to the Coda client, which places the file in its file cache. No

other traffic, such as writes, is currently intercepted by the proxy; it is passed directly

to the file server.

The CASPER file system is primarily concerned with client reads. However,

the current implementation could easily be extended to accommodate client write

operations by adopting a similar local cache lookup mechanism on the server-side.

To leverage the recipe-based mechanism, client writes can be viewed as server reads

of the modified file. When sending file modifications to the server, a client would

send a recipe of the modified file rather than the file contents. The server would then

peruse its own data for instances of the blocks, then request blocks that are not found

locally from nearby CAS providers, and finally retrieve any remaining blocks from

the client directly.

The next three sections describe the design and implementation of the recipe

server, proxy, and jukebox in more detail.
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Recipe Server

As the name indicates, the recipe server generates the recipe representations of files. It

is a specialized user process that accesses file-system information through the standard

file-system interface. The implementation maintains generated recipes as files in the

CASPER file system. For user files in a directory, zeta, the recipe server stores the

corresponding recipes in a sub-directory of zeta (e.g. zeta/.shadow/). As recipes

in CASPER store version information, the consistency between files and their recipes

can be managed in a lazy fashion.

In Figure 2.4, the recipe server is shown to be co-located with the Coda server.

However, any machine that is well-connected to the server may act as the recipe

server. In fact, if a user has a LAN-connected workstation, that workstation may

make an excellent choice for the location of the user’s primary recipe server, since it

is the most likely machine to have a warm client cache.

When a recipe request arrives at the recipe server, the recipe server first determines

if a recipe file corresponding to the request exists in the file system. If so, the recipe

is read, either from the recipe server’s cache or from the Coda file server, and checked

for consistency. That is, the version information in the recipe is compared to the

current version of the file. If the recipe is stale or does not exist, the recipe server

will generate a new one, send it to the proxy, and store it in the shadow directory for

potential reuse. Because CASPER is targeted towards the WAN, the XML recipes are

compressed using the bzip2 algorithm (based on the Burrows-Wheeler transform [30])

before being sent to the proxy.

Small files often will not benefit from CAS because of the recipe metadata and

network overhead costs. Consequently, CASPER does not employ the recipe mech-

anism when transferring small files. Instead, the recipe server responds to requests

for recipes of small files with the file’s contents rather than the file’s recipe. The

threshold for small files in the current implementation is 4 KB. The primary reason

for this special handling is that each recipe has a fixed overhead due to the meta-

data information stored in it. The penalty for transferring a recipe almost as large

as the file and then encountering a miss on CAS providers can be very high on low

bandwidth networks. This, combined with the overhead of consistency checks, com-

pression, and extra network transmissions can make the cost of sending recipes for

small files prohibitive.
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Data blocks that are not found on any of the queried CAS providers are referred to

as missed blocks. In the current implementation, the proxy fetches missed blocks from

the recipe server. Even if the recipe server does not have the file cached, it can request

it from the Coda server, which is guaranteed to contain the authoritative copy of the

file. To service missed blocks, the recipe server supports requests for byte extents.

That is, a missed block request is of the form fetch(file, offset, length). To

reduce the number of transmitted requests, missed blocks that are adjacent in the file

are combined into a single extent request by the proxy, and multiple fetch requests are

combined into a single multi-fetch message. In alternative implementations, missed

block requests could be serviced by the file server. The recipe server was chosen

instead to reduce the file server load in installations where the recipe server is not

co-located with the file server.

The recipe server also helps to maintain consistency by forwarding callbacks from

the file server to the proxy for files that the proxy has reconstructed via recipes.

That is, if the recipe server receives an invalidation callback for a file after sending a

recipe for the file to a client, the callback is forwarded to the requesting client via the

proxy. Because the recipe server is a user process and not a Coda client, the recipe

server does not receive the consistency callbacks directly. Instead, the recipe server

communicates with the Coda client module through codacon [127], Coda’s standard

socket-based interface, which exports callback messages. Consequently, implementa-

tion of the callback-forwarding mechanism does not require modification of the client

or server. Mechanisms that gather similar information, such as the SysInternals’ File-

mon tool [141], can potentially serve the same function should CASPER be ported

to network file systems that do not provide similar interfaces.

Proxy

The proxy is the entity that transparently adds CAS-based file reconstruction to the

Coda distributed file systems without modifying the file system code. This arrange-

ment is not necessary for the operation of CASPER but eases the implementation of

the prototype. The two main tasks that it performs are fetching recipes and recon-

structing files.

All client cache misses induce file fetch requests. Because the proxy acts as the

server for the client, the proxy intercepts these operations and sends a request for the
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Retval Query(in Hash h, out Bool b);

Retval MultiQuery(in Hash harray[], out Bool barray[]);

Retval Fetch(in/out Hash h, out Bool b, out Block blk);

Retval MultiFetch(in/out Hash harray[], out Bool barray[],

out Block blks[]);

The Retval is an enumerated type indicating whether or not the operation succeeded.

Table 2.1: Summary of the CAS API

file’s recipe to the recipe server; other file system operations are forwarded directly

to the Coda server. Assuming that a recipe fetch request is successful, the proxy

compares the version in the received recipe to the expected version of the file. If

the recipe version is more up-to-date than the proxy’s expected version number, the

proxy contacts the Coda server to confirm the file’s version number. If the recipe

version is older, there might be a problem with the recipe server (e.g. the recipe

server may have become disconnected from the Coda server), and therefore, the file

request is redirected to the file server. The request is also redirected to the file server

if any unexpected recipe server errors occur.

If the version numbers match, the proxy selects one of the available recipe choices

in the recipe file, and then proceeds to reconstruct the file. After interpreting the

XML data it received, the proxy queries both the client’s local cache as well as any

nearby jukeboxes for the hashes present in the recipe. Matching blocks, if any, are

fetched from the jukeboxes, and the remaining blocks are fetched from the recipe

server. Finally, the proxy assembles all constituent pieces and returns the resulting

file to the client.

Content Addressable Storage API

The CAS API, summarized in Table 2.1, defines the interface between CAS consumers

and CAS providers. The core operation is the retrieval of a file block identified by its

hash value through the Fetch call. The consumer specifies the hash of the object to be

retrieved (the hash data structure includes the hash type, block size, and hash value).

Fetch returns a boolean value indicating if the block was found and, if so, the block
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itself. A consumer may also make a single request for multiple blocks through the

MultiFetch function, specifying an array of hashes. This function returns an array

of booleans values and a set of data blocks. The CAS API also provides associated

Query and MultiQuery operations for inquiring after the presence of a block without

allocating the buffer space or network bandwidth to have the block returned.

Jukebox

To evaluate the CASPER prototype, a jukebox CAS provider was implemented that

conforms to the API described in Table 2.1. The consumer-provider (proxy-jukebox)

communication that supports the Query and Fetch functions is currently implemented

by using a lightweight RPC protocol. The jukebox also creates an in-memory index

of the data, keyed by hash, at startup to provide an efficient lookup mechanism.

The jukebox, a Linux-based workstation, uses the native ext3 file system to store

the CAS data blocks. Currently, the system administrator determines which set of

files are to be exported as CAS objects. The initial version of the jukebox had the

file name of each hashed data block as its SHA-1 hash rendered in ASCII. As each

block had an average size of 4 KB, this involved splitting most files into its constituent

blocks. However, given the the uniform randomness of the hashes and the organization

of the blocks on the file system as a B-tree, the data corresponding to each file was

scattered all over the disk. This destroyed locality and required a large number of

disk seeks to reconstruct a file. However, as recipes already index files in a content

addressable way, recipes for the files were used instead of splitting them. This solution

allows the system to get sequential read performance for block requests from the same

file. The use of recipes also allows multiple content addressable representations of a

file while keeping around only one copy of the actual data.

2.4 Performance Improvement

Three different benchmarks were used to evaluate the CASPER file system: a Mozilla

software installation, an execution trace of a virtual machine application, and a mod-

ified Andrew Benchmark. The descriptions of these benchmarks together with exper-

imental results is presented in this section.
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2.4.1 Experimental Methodology

The performance improvement seen due to the use of CASPER depends on the sen-

sitivity of the system performance to bandwidth on the WAN link as well as the

amount of CAS data it found had to be examined. Towards this goal, three different

benchmarks were used to measure the performance benefit of CAS-based file recon-

struction. Sensitivity analysis was used to evaluate each benchmark under several

combinations of network bandwidth, network latency, and jukebox hit-ratio.

The experimental infrastructure, shown in Figure 2.5 consisted of a number of

single-processor machines. The jukebox and client were workstations with 2.0 GHz

Pentium 4 processors. While the client had 512 MB of SDRAM, the jukebox had

1 GB. The file server contained a 1.2 GHz Pentium III Xeon processor and 1 GB of

SDRAM.

The jukebox and client ran the Red Hat 7.3 Linux distribution with the 2.4.18-3

kernel, and the file server ran the Red Hat 7.2 Linux distribution with the 2.4.18

kernel. All machines ran version 5.3.19 of Coda with a large enough disk cache on

the client to prevent eviction during the experiments. The recipe server process was

co-located with the file server. To discount the effect of cold I/O buffer caches, one

trial of each experiment was executed before taking any measurements. However, it

was ensured that the Coda client cache was cold for all experiments.

To model different bandwidths and latencies, the NISTNet [36] network emulator

(version 2.0.12) was used. The client was connected to the jukebox via 100 Mbit/s

Ethernet, but, as shown in Figure 2.5, the client’s connection to the server was con-

trolled via NISTNet. All benchmarks ran at three different client-server bandwidths:

10 Mbit/s, 1 Mbit/s, and 100 Kbit/s. No results are reported for a 100 Mbit/s client-

server connection, because CASPER clients should fetch data from the server directly

when the client-server bandwidth is equal to, or better than, the client-jukebox band-

width. Extra latencies of 10 ms and 100 ms were introduced for the 1 Mbit/s and

100 Kbit/s cases respectively. No extra latency was introduced for the 10 Mbit/s

case.

The effectiveness of CAS-based reconstruction in CASPER is highly dependent on

the fraction of data blocks the client can locate on nearby CAS providers. Sensitivity

analysis was used to explore the effect of the CAS provider hit rate on CASPER

performance. For each of the experiment and bandwidth cases, the jukebox was pop-
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Emulated
WAN

Figure 2.5: Experimental Setup

ulated with various fractions of the requested data: 100%, 66%, 33%, and 0%. That

is, in the 66% case, the jukebox is explicitly populated by randomly selecting 66%

of the data that would be requested during the execution of the benchmark. While

the requisite percentage in the above cases was met by selecting the required count

of hashes, this also equated to a similar percentage of data because each individual

hash, on average, represented 4 KB of data. The two extreme hit-ratios of 100%

and 0% give an indication of best-case performance and the system overhead. The

baseline for comparison is the execution of the benchmarks with an unmodified Coda

client and server.

The recipes employed by CASPER for these experiments included a single type

of recipe choice: namely, SHA-1 hashes of variable-size blocks with an average block

size of 4 KB. During the experiments, none of the recipes were cached on the client.

Every client cache miss generated a recipe fetch for the file. Further, because the

client cache was big enough to prevent eviction of any reconstructed files, the client

never requested a file or a recipe more than once.

Also, to accurately measure the performance gain from using CAS on low-bandwidth

connections, write traffic was prevented from competing with read traffic. To achieve

this, all experiments were run with the client in write-disconnected mode.

2.4.2 Mozilla Install

Software distribution is one application for which CASPER was proven effective.

Often when installing or upgrading a software package, a previous version of the

package is found on the target machine or another machine near the target; the

previous version may provide a wealth of matching blocks. To evaluate software
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Figure 2.6: Mozilla Install Results

distribution using CASPER, the time required to install the Mozilla 1.1 browser was

measured. The installation was packaged as 6 different RPM Package Manager [121]

(RPM) files ranging from 105 KB to 10.2 MB with a total size of 13.5 MB. All the

files were kept in a directory on the Coda File System and were installed by using

the rpm command with the -Uhv options.

Figure 2.6 reports the time taken for the Mozilla install to complete at various

network bandwidths. The times shown are the mean of three trials with a maximum

standard deviation of 1%. To compare benefits at these different settings, the time

shown is normalized with respect to the time taken for the baseline install with just

Coda. The observed average baseline install times at 100 Kbit/s, 1 Mbit/s, and 10

Mbit/s are 1238 seconds, 150 seconds, and 44 seconds, respectively. Note that apart

from the network transfer time, the total time also includes the time taken for the

rpm tool to install the packages.
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As expected, the gain from using CASPER is most pronounced at low bandwidths

where even relatively modest hit-rates can dramatically improve the performance of

the system. For example, the reduction in benchmark execution time is 26% at

1 Mbit/s with a 33% jukebox population. Further, even on networks with high

bandwidth and low latency characteristics as in the 10 Mbit/s case, the graph shows

that the worst-case overhead is low (5%) and a noticeable reduction in benchmark

time is possible (approximately 20% in the 100% population case).

2.4.3 Internet Suspend/Resume

The original motivation for pursuing opportunistic use of Content Addressable Stor-

age arose from the work done on Internet Suspend/Resume (ISR) [76]. ISR enables

the migration of a user’s entire computing environment by layering a virtual machine

system on top of a distributed file system. The key challenge in ISR is the transfer of

the user’s virtual machine state, which may be very large. However, the virtual ma-

chine state usually includes installations of popular operating systems and software

packages – data which may be expected to be found on CAS providers.

To investigate the potential performance gains obtained by using CASPER for

ISR, a trace-based approach was employed. For the workload, the virtual disk drive

accesses were traced during the execution of an ISR system that was running a desktop

application benchmark. The CDA (Common Desktop Application) benchmark [123]

uses Visual Basic scripts to automate the execution of common desktop applications

in the Microsoft Office suite executing in a Windows XP environment. By replaying

the trace, the file-access pattern of the ISR system was regenerated. The ISR data

of interest is stored as 256 KB files in CASPER. During the trace replay, which does

not include think time, the files are fetched through CASPER on the client machine.

During the benchmark, approximately 1000 such files are accessed.

Figure 2.7 shows the results from the Internet Suspend/Resume benchmark at

various network bandwidths. The time shown is again the mean of three trials with

a maximum standard deviation of 9.2%. The times shown are also normalized with

respect to the baseline time taken using unmodified Coda. The actual average baseline

times at 100 Kbit/s, 1 Mbit/s, and 10 Mbit/s are 5 hours and 59 minutes, 2046

seconds, and 203 seconds, respectively.
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Figure 2.7: Internet Suspend/Resume Benchmark Results

By comparing with the previous Mozilla experiment, it can be seen that the

benefit of using CASPER becomes even more pronounced as the quantity of data

transferred grows. Here, unlike in the Mozilla experiment, even the 10 Mbit/s case

shows significant gains from exploiting commonality for hit-ratios of 66% and 100%.

Note that in the ISR experiment that used a 1 Mbit/s link and a 33% hit rate,

CASPER reduced execution time by 44%. The interaction of application reads and

writes explains this anomaly. Every time an application writes a disk block after the

virtual machine resumes, the write triggers a read of that block, if that block has

not yet been fetched from the virtualized disk. Writes are asynchronous, and are

flushed to disk periodically. If CASPER speeds execution, fewer writes are flushed

to disk during the shorter run time, and fewer write-triggered reads occur during

that execution. Conversely, if CASPER slows execution, more writes are flushed to
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Jukebox Network Bandwidth

hit-ratio 100 Kbit/s 1 Mbit/s 10 Mbit/s

100% 261.3 (0.5) 40.3 (0.9) 17.3 (1.2)

66% 520.7 (0.5) 64.0 (0.8) 20.0 (1.6)

33% 762.7 (0.5) 85.0 (0.8) 21.3 (0.5)

0% 1069.3 (1.7) 108.7 (0.5) 23.7 (0.5)

Baseline 1150.7 (0.5) 103.3 (0.5) 13.3 (0.5)

Results from the Copy Phase of the modified Andrew Benchmark run at 100 Kbit/s,
1 Mbit/s, and 10 Mbit/s with 100 ms, 10ms, and no added latency respectively. Each
result is the mean of three trials with the standard deviation given in parentheses

Table 2.2: Modified Andrew Benchmark: Copy Phase Results

disk during the longer run time, and more write-triggered reads occur during that

execution. This interaction between writes and reads also explains the higher-than-

expected overhead in the 33% and 0% hit-ratio cases on the 10 Mbit/s link.

2.4.4 Modified Andrew Benchmark

The CASPER system was also evaluated by using a modified Andrew Benchmark [68].

The benchmark is very similar to the original but, like Pastiche [46], uses a much larger

source tree. The source tree, Apache 1.3.27, consists of 977 files that have a total

size of 8.62 MB. The script-driven benchmark contains five phases. Beginning with

the original source tree, the scripts recreate the original directory structure, execute

a bulk file copy of all source files to the new structure, stat every file in the new tree,

scan through all files, and finally build the application.

As mentioned earlier, all experiments were executed in write disconnected mode.

Thus, once the Copy phase of the modified Andrew benchmark was complete, a local

copy of the files allowed all remaining phases to be unaffected by network conditions;

only the Copy phase showed benefit from the CASPER system.

The modified Andrew benchmark differs from the Mozilla and ISR benchmarks in

that the average file size is small and more than half of the files are less than 4 KB in

size. As described in Section 2.3, the current system is configured such that all recipe
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requests for files less than 4 KB are rejected by the recipe server in favor of sending

the file instead. Thus, while the jukebox might have the data for that file, CASPER

fetches it across the slow network link.

Note that, as all operations happened in write-disconnected state, MakeDir, Scan-

Dir, ReadAll, and Make, being local operations, were not affected by bandwidth

limitations. As Table 2.3 shows, these phases are not affected by network conditions.

Table 2.2, therefore, only presents results for the Copy phase for all experiments,

as Copy is the only phase for which the execution time depends on bandwidth. The

results in the table show the relative benefits of using opportunistic CAS at different

bandwidths. The time shown is the mean of three trials with standard deviations

included within parentheses. Interestingly, the total time taken for the 100 Kbit/s

experiment with a hit-ratio of 0% is actually less than the baseline. This behavior can

be attributed to the fact that some of the data in the Apache source tree is replicated

and consequently matches blocks in the client cache.

The results for the 10 Mbit/s case show a high overhead in all cases. This bench-

mark illustrates a weakness of the current CASPER implementation. When many

small files are transferred over the network, the performance of CASPER is domi-

nated by sources of overhead. For example, the proxy-based approach induces several

additional inter-process transfers per file relative to the baseline Coda installation.

Further, the jukebox inspection introduces multiple additional network round-trip

time latencies associated with the jukebox query messages and subsequent missed-

block requests.

Normally, these sources of overhead would be compensated for by the improved

performance of converting WAN accesses to LAN accesses. However, for this par-

ticular benchmark, the difference in peak bandwidth between the LAN connection

and simulated WAN connection was not sufficient to compensate for the additional

overhead. In practice, when CASPER detects such a high-bandwidth situation, the

system should revert to baseline Coda behavior. Such an adjustment would avoid the

system slowdown illustrated by this example.

29



100 Kbit/s

AB phase 100% 66% 33% 0% Baseline
MakeDir 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Copy 261.3 (0.5) 520.7 (0.5) 762.7 (0.5) 1069.3 (1.7) 1150.7 (0.5)
ScanDir 2.0 (0.0) 2.0 (0.0) 2.3 (0.5) 2.3 (0.5) 2.0 (0.0)
ReadAll 4.0 (0.0) 3.7 (0.5) 3.7 (0.5) 3.7 (0.5) 4.3 (0.5)
Make 15.3 (0.5) 16.7 (0.9) 15.7 (0.5) 16.0 (0.0) 15.7 (0.5)
Total 282.7 (0.9) 543.0 (1.4) 784.7 (0.9) 1091.3 (1.7) 1172.7 (0.9)

1 Mbit/s

AB phase 100% 66% 33% 0% Baseline
MakeDir 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Copy 40.3 (0.9) 64.0 (0.8) 85.0 (0.8) 108.7 (0.5) 103.3 (0.5)
ScanDir 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.3 (0.5) 2.0 (0.0)
ReadAll 3.7 (0.5) 3.7 (0.5) 4.0 (0.0) 3.7 (0.5) 3.7 (0.5)
Make 15.3 (0.5) 16.0 (0.0) 15.7 (0.5) 16.0 (0.0) 15.7 (0.5)
Total 61.3 (0.9) 85.7 (1.2) 106.7 (0.5) 130.7 (0.5) 124.7 (0.5)

10 Mbit/s

AB phase 100% 66% 33% 0% Baseline
MakeDir 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.7 (0.5) 0.0 (0.0)

Copy 17.3 (1.2) 20.0 (1.6) 21.3 (0.5) 23.7 (0.5) 13.3 (0.5)
ScanDir 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.0 (0.0) 2.7 (0.5)
ReadAll 3.7 (0.5) 4.0 (0.0) 3.7 (0.5) 3.7 (0.5) 3.7 (0.5)
Make 16.0 (0.0) 16.0 (0.0) 16.0 (0.0) 16.0 (0.0) 15.7 (0.5)
Total 39.0 (0.8) 42.0 (1.6) 43.0 (0.9) 46.0 (0.8) 35.3 (0.5)

Modified Andrew Benchmark run at 100 Kbit/s, 1 Mbit/s, and 10 Mbit/s. Each
column represents the hit-ratio on the jukebox. Times are reported in seconds with
standard deviations given in parentheses

Table 2.3: Complete Results from the Modified Andrew Benchmark
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2.5 Summary

This chapter has shown the design and implementation of CASPER, a distributed

file system that opportunistically uses content-addressable techniques to improve the

performance of legacy distributed systems. This is achieved without weakening any

of the system attributes of the legacy system or requiring modifications to either the

system or applications. The evaluation of the prototype demonstrates that CASPER

has low overhead in WAN conditions and its use can, even with moderate amounts

of commonality, lead to a significant gain in low bandwidth scenarios. Finally, even

in the absence of CAS providers, CASPER would be no worse off than the legacy file

system as it can fetch files directly from the centralized file server.
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Chapter 3

Integrating Portable and

Distributed Storage

3.1 Introduction

This chapter examines how non-networked storage resources, such as portable hard

drives and the increasingly popular USB flash drives, can be exploited via the use

of content-addressable techniques to improve the performance of legacy distributed

systems. However, unlike CASPER, this integration is complicated by the fact that

non-networked storage exhibits very different performance characteristics, usage mod-

els, and failure modes when compared to networked CAS resources.

This chapter focuses on a technique called lookaside caching [150] that uses content-

addressable techniques to unify “storage in the cloud” (distributed storage) and “stor-

age in the hand” (portable storage) into a single abstraction. By combining the

strengths of distributed file systems and portable storage devices, while negating

their weaknesses, lookaside caching allows users to treat the devices they carry as

merely performance and availability assists for distant file servers.

As distributed file systems are well-entrenched today, it can be assumed that

these are successful because they offer genuine value to their users. Hence, the goal

of lookaside caching is to integrate portable storage devices into such a system in a

transparent manner such that it is minimally disruptive of its existing usage model.

In addition, no changes are made to the native file system format of a portable storage

32



device; all that is required is that the device be mountable as a local file system at

any client of the distributed file system. In spite of its simplicity, this technique can

prove to be powerful and versatile. Further, careless use or the absence of portable

storage has no catastrophic consequences.

Section 3.2 begins by examining the strengths and weaknesses of portable storage

and distributed file systems. The design and implementation of lookaside caching is

then described in Section 3.3. Using three different benchmarks, Section 3.4 quantifies

the performance benefit of lookaside caching. Section 3.5 concludes with a brief

summary of this chapter.

3.2 Background on Portable Storage

Floppy disks were the sole means of sharing data across users and computers in the

early days of personal computing. Although they were trivial to use, considerable

discipline and foresight was required of users to ensure data consistency and avail-

ability, and to avoid data loss — if the user did not have the right floppy at the right

place and time, they were in trouble! These limitations were overcome by the emer-

gence of distributed file systems such as NFS [122] and AFS [68]. In such a system,

responsibility for data management is delegated to the distributed file system and its

operational staff.

Personal storage has come full circle in the recent past. There has been explosive

growth in the availability of USB- and Firewire-connected storage devices such as

flash memory keychains and portable disk drives. Although very different from floppy

disks in capacity, data transfer rate, form factor, and longevity, their usage model is

no different. In other words, they suffer from the same limitations mentioned above.

To understand the continuing popularity of portable storage, it is useful to review

the strengths and weaknesses of portable storage and distributed file systems. While

there is considerable variation in the designs of distributed file systems, there is also

a substantial degree of commonality across them. The discussion below focuses on

these common themes.

Performance: A portable storage device offers uniform performance at all loca-

tions, independent of factors such as network connectivity, initial cache state, and

temporal locality of references. Except for a few devices such as floppy disks, the ac-
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cess times and bandwidths of portable devices are comparable to those of local disks.

In contrast, the performance of a distributed file system is highly variable. With a

warm client cache and good locality, performance can match local storage. With a

cold cache, poor connectivity and low locality, performance can be intolerably slow.

Availability: If a user has a portable storage device in hand, she can access its

data. Short of device failure, which is very rare, no other common failures prevent

data access. In contrast, distributed file systems are susceptible to network failure,

server failure, and a wide range of operator errors.

Robustness: A portable storage device can easily be lost, stolen or damaged. Data

on the device becomes permanently inaccessible after such an event. In contrast, data

in a distributed file system continues to be accessible even if a particular client that

uses it is lost, stolen or damaged. For added robustness, the operational staff of

a distributed file system perform regular backups and typically keep some of the

backups off site to allow recovery after catastrophic site failure. Backups also help

recovery from user error: if a user accidentally deletes a critical file, she can recover

a backed-up version of it. In principle, a highly disciplined user could implement a

careful regimen of backup of portable storage to improve robustness. In practice, few

users are sufficiently disciplined and well-organized to do this. It is much simpler for

professional staff to regularly back up a few file servers, thus benefiting all users.

Sharing/Collaboration: The existence of a common name space simplifies sharing

of data and collaboration between the users of a distributed file system. This is much

harder if done by physical transfers of devices.

Consistency: Without explicit user effort, a distributed file system presents the

latest version of a file when it is accessed. In contrast, a portable device has to be

explicitly kept up to date. When multiple users can update a file, it is easy to get

into situations where a portable device has stale data without its owner being aware

of this fact.

Capacity: Any portable storage device has finite capacity. In contrast, the client

of a distributed file system can access virtually unlimited amounts of data spread

across multiple file servers. Since local storage on the client is merely a cache of

server data, its size only limits working set size rather than total data size.

Security: The privacy and integrity of data on portable storage devices relies

primarily on physical security. A further level of safety can be provided by encrypting
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the data on the device, and by requiring a password to mount it. These can be

valuable as a second layer of defense in case physical security fails. Denial of service

is impossible if a user has a portable storage device in hand. In contrast, the security

of data in a distributed file system is based on more fragile assumptions. Denial of

service may be possible through network attacks. Privacy depends on encryption of

network traffic. Fine-grained protection of data through mechanisms such as access

control lists is possible, but relies on secure authentication using a mechanism such

as Kerberos [139].

Ubiquity: A distributed file system requires operating system support. In addition,

it may require environmental support such as Kerberos authentication and specific

firewall configuration. Unless a user is at a client that meets all of these requirements,

she cannot access her data in a distributed file system. In contrast, portable storage

only depends on widely-supported low-level hardware and software interfaces. If a

user sits down at a random machine, she can be much more confident of accessing

data from portable storage in her possession than from a remote file server.

3.3 Achieving Transparency

The goal of lookaside caching is to exploit the performance and availability advantages

of portable storage to improve these same attributes in a distributed file system. The

resulting design should be transparent, i.e, it should preserve all other characteristics

of the underlying distributed file system and not require any changes to applications or

user behavior. In particular, there should be no compromise of robustness, consistency

or security. There should also be no added complexity in sharing and collaboration.

Finally, the design should be tolerant of human error: improper use of the portable

storage device (such as using the wrong device or forgetting to copy the latest version

of a file to it) should not hurt correctness.

Lookaside caching is an extension of AFS2-style whole-file caching [68] that meets

the above goals. It is based on the observation that virtually all distributed file system

protocols provide separate remote procedure calls (RPCs) for access of metadata and

access of data content. Lookaside caching extends the definition of metadata to

include a cryptographic hash of data content. This extension only increases the size

of metadata by a modest amount: just 20 bytes if SHA-1 [128] is used as the hash.
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Since hash size does not depend on file length, it costs very little to obtain and

cache hash information even for many large files. Using POSIX terminology, caching

the results of “ls -lR” of a large tree is feasible on a resource-limited client. This

continues to be true even if one augments stat information for each file or directory

in the tree with its SHA-1 hash.

Since lookaside caching treats the hash as part of the metadata, there is no com-

promise in consistency. The underlying cache coherence protocol of the distributed

file system determines how closely client state tracks server state. There is no degra-

dation in the accuracy of this tracking if the hash is used to redirect access of data

content. To ensure no compromise in security, the file server should return a null

hash for any object on which the client only has permission to read the metadata but

not the data itself.

It should be noted that lookaside caching can be viewed as a degenerate case of

the use of recipes as used by CASPER in Chapter 2. In CASPER, a recipe is an

XML description of file content that enables block-level reassembly of the file from

content-addressable storage. One can view the hash of a file as the smallest possible

recipe for it. The implementation using recipes is considerably more complex than

the support for lookaside caching. In return for this complexity, synthesis from recipes

may succeed in many situations where lookaside fails.

Further, the fact that lookaside caching system does not modify the portable

device’s storage layout allows it to use any device that exports a generic file system

interface. This allows files to be stored on the device in any manner chosen by the

user, including the same tree structure as the distributed file system. For example,

in the Kernel Compile benchmark described in Section 3.4.1, the portable device was

populated by simply unarchiving a normal kernel source tree. The advantage of this

is that user can still have access to the files in the absence of a network or even a

distributed file system client. However, this also allows the user to edit files without

the knowledge of the lookaside caching system. While recomputation of the file’s hash

at the time of use can expose the update, it is up to the user to manually copy the

changes back into the distributed file system.
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3.3.1 Prototype Implementation

Lookaside caching has been implemented in the Coda file system on Linux. The user-

level implementation of both the Coda client cache manager and server code greatly

simplified development effort since no kernel changes were needed. The implementa-

tion consists of four parts: a small change to the client-server protocol; a quick index

check (the “lookaside”) in the code path for handling cache misses; a tool for gen-

erating lookaside indexes; and a set of user commands to include or exclude specific

lookaside devices.

The protocol change replaces two RPCs, ViceGetAttr() and ViceValidateAttrs()

with the extended calls ViceGetAttrPlusSHA() and ViceValidateAttrsPlusSHA()

that have an extra parameter for the SHA-1 hash of the file. ViceGetAttr() is used

to obtain metadata for a file or directory, while ViceValidateAttrs() is used to

revalidate cached metadata for a collection of files or directories when connectivity is

restored to a server. The implementation preserves compatibility with legacy servers.

If a client connects to a server that has not been upgraded to support lookaside

caching, it falls back to using the original RPCs mentioned above. Due to the sim-

plicity of this scheme, the changes required for lookaside caching, unlike CASPER,

were made directly to the Coda file system. Lookaside caching only added ∼900 Lines

of Code (LoC) to a codebase of ∼126,000 LoC.

Once a client possesses valid metadata for an object, it can use the hash to redirect

the fetch of data content. If a mounted portable storage device has a file with a

matching hash value, the client can obtain the contents of the file from the device

rather than from the file server. Whether it is beneficial to do this depends on factors

such as file size, network bandwidth, and device transfer rate. The important point

is that possession of the hash gives a degree of freedom that clients of a distributed

file system do not possess today.

The lookaside occurs just before the execution of the ViceFetch() RPC to fetch

file contents. Before network communication is attempted, the client consults one or

more lookaside indexes to see if a local file with identical SHA-1 value exists. Trusting

in the “weak” collision resistance property, as defined in Chapter 1, of SHA-1 [85],

a copy operation on the local file can then be a substitute for the RPC. To detect

version skew between the local file and its index, the SHA-1 hash of the local file

is re-computed. In case of a mismatch, the local file substitution is suppressed and

37



Command Description

cfs lka --clear exclude all indexes

cfs lka +db1 include index db1

cfs lka -db1 exclude index db1

cfs lka --list print lookaside statistics

Table 3.1: Lookaside Commands on Client

the cache miss is serviced by contacting the file server. Coda’s consistency model

is not compromised, although some small amount amount of work is wasted on the

lookaside path.

The index generation tool traverses the file tree rooted at a specified pathname. It

computes the SHA-1 hash of each file and enters the filename-hash pair into the index

file, which is similar to a Berkeley DB database [99]. The tool is flexible regarding the

location of the tree being indexed: it can be local, on a mounted storage device, or

even on a nearby NFS or Samba server. For a removable device such as a USB storage

keychain or a DVD, the index is typically located right on the device. This yields a

self-describing storage device that can be used anywhere. Note that an index captures

the values in a tree at one point in time. No attempt is made to track updates made

to the tree after the index is created. The tool must be re-run to reflect those updates.

Thus, a lookaside index is best viewed as a collection of hints [143].

Dynamic inclusion or exclusion of lookaside devices is done through user-level

commands. Table 3.1 lists the relevant commands on a client. Note that multiple

lookaside devices can be in use at the same time. The devices are searched in order

of inclusion.

3.4 Performance Improvement

How much of a performance win can lookaside caching provide? The answer clearly

depends on the workload, on network quality, and on the overlap between data on

the lookaside device and data accessed from the distributed file system. To ob-

tain a quantitative understanding of this relationship, controlled experiments were

conducted using three different benchmarks: a kernel compile benchmark, a virtual
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Kernel Size (MB) Files Same Bytes Same Release Date Days Stale

2.4.18 118.0 100% 100% 02/25/02 0

2.4.17 116.2 90% 79% 12/21/01 66

2.4.13 112.6 74% 52% 10/23/01 125

2.4.9 108.0 53% 30% 08/16/01 193

2.4.0 95.3 28% 13% 01/04/01 417

In this experiment, the kernel being compiled was always version 2.4.18. The kernel
on the lookaside device varied across the versions listed above. The second column
gives the size of the source tree of a version. The third column shows what fraction
of the files in that version remain the same as in 2.4.18. For the given percentage of
similar files, the number of bytes, relative to total release size, is given in the fourth
column. The last column gives the difference between the release date of a version
and the release date of 2.4.18.

Table 3.2: Characteristics of Linux Kernel Source Trees

machine migration benchmark, and a single-user trace replay benchmark. The rest

of this section presents the benchmarks, experimental setups, and results.

3.4.1 Kernel Compile

Benchmark Description

The first benchmark models a nomadic software developer who does work at different

locations such as her home, her office, and a satellite office. Network connection

quality to her file server may vary across these locations. The developer carries a

version of her source code on a lookaside device. This version may have some stale

files because of server updates by other members of the development team.

Version 2.4 of the Linux kernel was used as the source tree in this benchmark. Ta-

ble 3.2 shows the measured degree of commonality across five different minor versions

of the 2.4 kernel, obtained from the FTP site ftp.kernel.org. This data shows

that there is a substantial degree of commonality even across releases that are many

weeks apart. The experiments only use five versions of Linux, but Figure 3.1 confirms

that commonality across minor versions exists for all versions of the Linux 2.4 kernel

series.
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Each curve above corresponds to one minor version of the Linux 2.4 kernel.
That curve represents the measured commonality between the minor version and all
previous minor versions. The horizontal axis shows the set of possible minor versions.
The vertical axis shows the percentage of data in common. The rightmost point on
each curve corresponds to 100% because each minor version overlaps 100% with
itself.

Figure 3.1: Commonality across Linux 2.4 Versions

Experimental Setup

Figure 3.2 shows the experimental setup used for the evaluation. The client contained

a 3.0 GHz Pentium 4 processor (with Hyper-Threading) with 2 GB of SDRAM. The

file server contained a 2.0 GHz Pentium 4 processor (without Hyper-Threading) with

1 GB of SDRAM. Both machines ran Red Hat 9.0 Linux and Coda 6.0.2. The client

file cache size was large enough to prevent eviction during the experiments, and the

client operated in write-disconnected mode. The client file cache was always cold at

the start of an experiment. To discount the effect of a cold I/O buffer cache on the

server, a warming run was done prior to each set of experiments.

All experiments were run at four different bandwidth settings: 100 Mbit/s, 10

Mbit/s, 1 Mbit/s, and 100 Kbit/s. The NISTNet [36] network emulator (version

2.0.12) was used to control bandwidth and latency. No extra latency was added at
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Figure 3.2: Experimental Setup

Measured Data Rate

File Size Read (Mbit/s) Write (Mbit/s)

4 KB 6.3 7.4

16 KB 6.3 12.5

64 KB 16.7 25.0

256 KB 25.0 22.2

1 MB 28.6 25.8

10 MB 29.3 26.4

100 MB 29.4 26.5

This tables displays the measured read and write bandwidths for different file sizes
on the portable storage device used in the experiments. To discount caching effects,
the device was unmounted and remounted before each trial. For the same reason, all
writes were performed in synchronous mode. Every data point is the mean of three
trials; the standard deviation observed was negligible.

Table 3.3: Portable Storage Device Performance

100 Mbit/s and 10 Mbit/s. For 1 Mbit/s and 100 Kbit/s, NISTNet was configured

to add round-trip latencies of 10 ms and 100 ms respectively.

The lookaside device used in the experiments was a 512 MB Hi-Speed USB flash

memory keychain. The manufacturer of this device quotes a nominal read bandwidth

of 48 Mbit/s, and a nominal write bandwidth of 36 Mbit/s. A set of tests were

conducted on the client to verify these figures. As the results in Table 3.3 show, for

all file sizes ranging from 4 KB to 100 MB, the measured read and write bandwidths

were much lower than the manufacturer’s figures.
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Results

The performance metric in this benchmark is the elapsed time to compile the 2.4.18

kernel. This directly corresponds to the performance perceived by a hypothetical

software developer. Although the kernel being compiled was always version 2.4.18

in the experiment, the contents of the portable storage device were varied to explore

the effects of using stale lookaside data. The portable storage device was unmounted

between each experiment run to discount the effect of the buffer cache.

Table 3.4 presents the results. For each portable device state shown in that figure,

the corresponding “Files Same” and “Bytes Same” columns of Table 3.2 bound the

usefulness of lookaside caching. The “Days Stale” column indicates the staleness of

device state relative to the kernel being compiled.

At the lowest bandwidth (100 Kbit/s), the win due to lookaside caching is impres-

sive: over 90% with an up-to-date device (improving from 9348.8 seconds to 884.9

seconds), and a non-trivial 10.6% (from 9348.8 seconds to 8356.7 seconds) with data

that is over a year old (version 2.4.0)! Data that is over two months old (version

2.4.17) is still able to give a win of 67.8% (from 9348.8 seconds to 3011.2 seconds).

At a bandwidth of 1 Mbit/s, the wins are still impressive. They range from 63%

(from 1148.3 seconds to 424.8 seconds) with an up-to-date portable device, down to

4.7% (1148.3 seconds to 1094.3 seconds) with the oldest device state. A device that

is stale by one version (2.4.17) still gives a win of 52.7% (1148.3 seconds to 543.6

seconds).

On a slow LAN (10 Mbit/s), lookaside caching continues to give a strong win if

the portable device has current data: 27.1% (388.4 seconds to 282.9 seconds). The

win drops to 6.1% (388.4 seconds to 364.8 seconds) when the portable device is one

version old (2.4.17). When the version is older than 2.4.17, the cost of failed lookasides

exceeds the benefits of successful ones. This yields an overall loss rather than a win

(represented as a negative win in Table 3.4). The worst loss at 10 Mbit/s is 8.4%

(388.4 seconds to 421.1 seconds).

Only on a fast LAN (100 Mbit/s) does the overhead of lookaside caching exceed

its benefit for all device states. The loss ranges from a trivial 1.7% (287.7 seconds to

292.7 seconds) with current device state to a substantial 24.5% (287.7 seconds to 358.1

seconds) with the oldest device state. Since the client cache manager already monitors
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Lookaside Device State
Bandwidth No Device 2.4.18 2.4.17 2.4.13 2.4.9 2.4.0

287.7 292.7 324.7 346.4 362.7 358.1
100 Mbit/s (5.6) (6.4) (16.4) (6.9) (3.4) (7.7)

[-1.7%] [-12.9%] [-20.4%] [-26.1%] [-24.5%]

388.4 282.9 364.8 402.7 410.9 421.1
10 Mbit/s (12.9) (8.3) (12.4) (2.3) (2.1) (12.8)

[27.1%] [6.1%] [-3.7%] [-5.8%] [-8.4%]

1148.3 424.8 543.6 835.8 1012.4 1094.3
1 Mbit/s (6.9) (3.1) (11.5) (3.7) (12.0) (5.4)

[63.0%] [52.7%] [27.2%] [11.8%] [4.7%]

9348.8 884.9 3011.2 5824.0 7616.0 8356.7
100 Kbit/s (84.3) (12.0) (167.6) (221.6) (130.0) (226.9)

[90.5%] [67.8%] [37.7%] [18.5%] [10.6%]

These results show the time (in seconds) taken to compile the Linux 2.4.18 kernel. The
column labeled “No Device” shows the time taken for the compile when no portable
device was present and all data had to be fetched over the network. The column labeled
“2.4.18” shows the results when all of the required data was present on the storage
device and only metadata (i.e. stat information) was fetched across the network.
The rest of the columns show the cases where the lookaside device had versions of the
Linux kernel older than 2.4.18. Each data point is the mean of three trials; standard
deviations are in parentheses. The numbers in square brackets give the “win” for each
case: that is, the percentage improvement over the “no device” case.

Table 3.4: Time for Compiling Linux Kernel 2.4.18
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bandwidth to servers, it would be simple to suppress lookaside at high bandwidths.

Although this simple change has not been implemented yet, I am confident that it

can result in a system that almost never loses due to lookaside caching.

3.4.2 Internet Suspend/Resume

Benchmark Description

The second benchmark is based on Internet Suspend/Resume (ISR) [76], a thick-client

mechanism that allows a user to suspend work on one machine, travel to another

location, and resume work on another machine there. The ISR-2 prototype [123] was

used for this benchmark. The user-visible state at resume is exactly what it was at

suspend. ISR is implemented by layering a virtual machine (VM) on a distributed

file system. The ISR prototype layers VMware on Coda, and represents VM state as

a tree of 256 KB files.

A key ISR challenge is large VM state, typically many tens of GB. When a user

resumes on a machine with a cold file cache, misses on the 256 KB files can result

in significant performance degradation. This overhead can be substantial at resume

sites with poor connectivity to the file server that holds VM state. If a user is willing

to carry a portable storage device with him, part of the VM state can be copied to

the device at suspend. Lookaside caching can then reduce the performance overhead

of cache misses at the resume site. It might not always be possible to carry the entire

VM state as writing it to the portable device may take too long for a user in a hurry

to leave. In contrast, propagating updates to a file server can continue after the user

leaves.

A different use of lookaside caching for ISR is based on the observation that there

is often substantial commonality in VM state across users [23, 94]. For example, the

installed code for applications such as Microsoft Office is likely to be the same for

all users running the identical software release of those applications. Since this code

does not change until a software upgrade (typically many months apart), it would be

simple to distribute copies of the relevant data on DVD or CD-ROM media at likely

resume sites.

Notice that lookaside caching is tolerant of human error in both of the above

contexts. If the user inserts the wrong USB storage keychain into her machine at
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resume, stale data on it will be ignored. Similarly, use of the wrong DVD or CD-

ROM does not hurt correctness. In both cases, the user sees slower performance but

is otherwise unaffected.

Since ISR is intended for interactive workloads typical of laptop environments, the

experiment uses the Common Desktop Application (CDA) benchmark [123] that mod-

els an interactive Windows user. CDA uses Visual Basic scripting to drive Microsoft

Office applications such as Word, Excel, Powerpoint, Access, and Internet Explorer. It

consists of a total of 113 independently-timed operations such as find-and-replace,

open-document, and save-as-html. Note that each of these macro-operations may

result in more than one file system call within the VM and, consequently, multiple

requests to Coda. Minor user-level actions such as keystrokes, object selection, or

mouse-clicks are not timed.

Experimental Setup

The experimental infrastructure consists of clients with 2.0 GHz Pentium 4 processors

connected to a server with a 1.2 GHz Pentium III Xeon processor through 100 Mbit/s

Ethernet. All machines have 1 GB of RAM, and run Red Hat 7.3 Linux. Unless

indicated otherwise, a Hi-Speed USB flash memory keychain was used. Clients use

VMware Workstation 3.1 and have an 8 GB Coda file cache. The VM is configured

to have 256 MB of RAM and 4 GB of disk, and runs Windows XP as the guest

OS. As in the previous benchmark, the NISTNet network emulator is used to control

bandwidth.

Results

From a user’s perspective, the key performance metrics of ISR can be characterized

by two questions:

• How slow is the resume step?

This speed is determined by the time to fetch and decompress the physical

memory image of the VM that was saved at suspend. This is the smallest part

of total VM state that must be present to begin execution. The rest of the state

can be demand-fetched after execution resumes. The delay between the resume
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No With

Lookaside Lookaside Win

100 Mbit/s 14 (0.5) 13 (2.2) 7.1%

10 Mbit/s 39 (0.4) 12 (0.5) 69.2%

1 Mbit/s 317 (0.3) 12 (0.3) 96.2%

100 Kbit/s 4301 (0.6) 12 (0.1) 99.7%

This table shows the resume latency (in seconds) for the CDA benchmark at different
bandwidths, with and without lookaside to a USB flash memory keychain. Each data
point is the mean of three trials; standard deviations are in parentheses.

Table 3.5: Resume Latency

No With

Lookaside Lookaside Win

100 Mbit/s 173 (9) 161 (28) 6.9%

10 Mbit/s 370 (14) 212 (12) 42.7%

1 Mbit/s 2688 (39) 1032 (31) 61.6%

100 Kbit/s 30531 (1490) 9530 (141) 68.8%

This table gives the total operation latency (in seconds) for the CDA benchmark at
different bandwidths, with and without lookaside to a DVD. Each data point is the
mean of three trials, with standard deviation in parentheses. Approximately 50% of
the client cache misses were satisfied by lookaside on the DVD. The files on the
DVD correspond to the image of a freshly-installed virtual machine, prior to user
customization.

Table 3.6: Total Operation Latency

command and the earliest possible user interaction is referred to as Resume

Latency.

• After resume, how much is work slowed?

The user may suffer performance delays after resume due to file cache misses.

The metric used to reflect the user’s experience is the total time to perform all

the operations in the CDA benchmark (this excludes user think time). This

metric is referred to as Total Operation Latency.

Portable storage can improve both resume latency and total operation latency.

Table 3.5 presents the results for the case where a USB flash memory keychain is
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updated at suspend with the minimal state needed for resume. This is a single 41 MB

file corresponding to the compressed physical memory image of the suspended virtual

machine. Comparing the second and third columns of this figure, it can be seen that

the effect of lookaside caching is noticeable below 100 Mbit/s, and is dramatic at 100

Kbit/s. A resume time of just 12 seconds rather than 317 seconds (at 1 Mbit/s) or

4301 seconds (at 100 Kbit/s) can make a world of a difference to a user with a few

minutes of time in a coffee shop or a waiting room. Even at 10 Mbit/s, resume latency

is a factor of 3 faster (12 seconds rather than 39 seconds). The user only pays a small

price for these substantial gains: she has to carry a portable storage device, and has

to wait for the device to be updated at suspend. With a Hi-Speed USB device, this

wait is just a few seconds.

To explore the impact of lookaside caching on total operation latency, a DVD was

constructed with the VM state captured after installation of Windows XP and the Mi-

crosoft Office suite, but before any user-specific or benchmark-specific customizations.

This DVD was used as a lookaside device after resume. In a real-life deployment, an

entity such as the computing services organization of a company, university, or ISP

would create a set of VM installation images and matching DVDs for its clientele.

Distributing DVDs to each ISR site does not compromise ease of management be-

cause misplaced or missing DVDs do not hurt correctness. A concerned user could,

of course, carry her own DVD.

Table 3.6 shows that lookaside caching reduces total operation latency at all band-

widths, with the reduction being most noticeable at low bandwidths. Table 3.7 shows

the distribution of slowdown for individual operations in the benchmark. Slowdown

is defined as (TBW − TNoISR)/TNoISR, with TBW being the benchmark running

time at the given bandwidth and TNoISR its running time in VMware without ISR.

Table 3.7, sorted by the degree of slowdown, confirms that lookaside caching reduces

the number of operations with very large slowdowns.

3.4.3 Trace Replay

Benchmark Description

Finally, the trace replay benchmark described by Flinn et al. [58] in their evaluation

of data staging was used. This benchmark consists of four traces that were obtained
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Table 3.7: Slowdown Improvements with Lookaside

Caching
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Table 3.7 – continued from previous page
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Number of Length Update Working

Trace Operations (Hours) Ops. Set (MB)

purcell 87739 27.66 6% 252

messiaen 44027 21.27 2% 227

robin 37504 15.46 7% 85

berlioz 17917 7.85 8% 57

This table summarizes the file system traces used for the benchmark described in
Section 3.4.3. “Update Ops.” only refers to the percentage of operations that change
the file system state such as mkdir, close-after-write, etc. but not individual reads
and writes. The working set is the size of the data accessed during trace execution.

Table 3.8: Trace Statistics

from single-user workstations and that range in collection duration from slightly less

than 8 hours to slightly more than a day. As the original traces only capture file sizes

and not content, the trace replay tool, at startup, fills the files with random data.

Table 3.8 summarizes the attributes of these traces. To ensure a heavy workload,

these traces were replayed as fast as possible, without any filtering or think delays.

Experimental Setup

The experimental setup used was the same as that described in Section 3.4.1.

Results

The performance metric in this benchmark is the time taken for trace replay comple-

tion. Although no think time is included, trace replay time is still a good indicator

of performance seen by the user [154].

To evaluate the performance in relation to the portable device state, the amount

of data found on the device was varied. This was done by examining the pre-trace

snapshots of the traced file systems and then selecting a subset of the trace’s working

set. For each trace, initially 33% of the files were randomly selected from the pre-

trace snapshot as the initial portable device state. Files were again randomly added

to raise the percentage to 66% and then finally to 100%. However, these percentages

do not necessarily mean that the data from every file present on the portable storage

50



device was used during the benchmark. The snapshot creation tool also creates files

that might be overwritten, unlinked, or simply stat-ed. Therefore, while these files

might be present on the portable device, they would not be read from it during trace

replay.

Figure 3.9 presents the results. The baseline for comparison, shown in column 3 of

the figure, was the time taken for trace replay when no lookaside device was present.

At the lowest bandwidth (100 Kbit/s), the win due to lookaside caching with an

up-to-date device was impressive: ranging from 83% for the Berlioz trace (improving

from 1281.2 seconds to 216.8 seconds) to 53% for the Purcell trace (improving from

2828.7 seconds to 1343.0 seconds). Even with devices that only had 33% of the data,

lookaside caching was still able to get wins ranging from 25% for the Robin trace to

15% for the Berlioz and Purcell traces.

At a bandwidth of 1 Mbit/s, the wins still remain substantial. For an up-to-date

device, they range from 68% for the Berlioz trace (improving from 94.0 seconds to

30.2 seconds) to 39% for the Purcell trace (improving from 292.8 seconds to 178.4

seconds). Even when the device contain less useful data, the wins still range from

24% to 46% when the device has 66% of the snapshot and from 13% to 24% when

the device has 33% of the snapshot.

On a slow LAN (10 Mbit/s) the wins can be strong for an up-to-date device:

ranging from 28% for the Berlioz trace (improving from 12.9 seconds to 9.3 seconds)

to 6% for Messiaen (improving from 36.3 seconds to 34.1 seconds). Wins tend to

tail off beyond this point as the device contains lesser fractions of the working set,

but it is important to note that performance is never significantly below that of the

baseline.

Only on a fast LAN (100 Mbit/s) does the overhead of lookaside caching begin

to dominate. For an up-to-date device, the traces show a loss ranging from 6% for

Purcell (changing from 50.1 seconds to 53.1 seconds) to a loss of 20% for Messiaen

(changing from 26.4 seconds to 31.8 seconds). While the percentages might be high,

the absolute difference in number of seconds is not and might be imperceptible to the

user. It is also interesting to note that the loss decreases when there are fewer files on

the portable storage device. For example, the loss for the Robin trace drops from 14%

when the device is up-to-date (a difference of 4.3 seconds) to 2% when the device has
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Lookaside Device State
Bandwidth No Device 100% 66% 33%

Purcell

100 Mbit/s 50.1 (2.6) 53.1 (2.4) 50.5 (3.1) 48.8 (1.9)
10 Mbit/s 61.2 (2.0) 55.0 (6.5) 56.5 (2.9) 56.6 (4.6)
1 Mbit/s 292.8 (4.1) 178.4 (3.1) 223.5 (1.8) 254.2 (2.0)

100 Kbit/s 2828.7 (28.0) 1343.0 (0.7) 2072.1 (30.8) 2404.6 (16.3)

Messiaen

100 Mbit/s 26.4 (1.6) 31.8 (0.9) 29.8 (0.9) 27.9 (0.8)
10 Mbit/s 36.3 (0.5) 34.1 (0.7) 36.7 (1.5) 37.8 (0.5)
1 Mbit/s 218.9 (1.2) 117.8 (0.9) 157.0 (0.6) 184.8 (1.3)

100 Kbit/s 2327.3 (14.8) 903.8 (1.4) 1439.8 (6.3) 1856.6 (89.2)

Robin

100 Mbit/s 30.0 (1.6) 34.3 (3.1) 33.1 (1.2) 30.6 (2.1)
10 Mbit/s 37.3 (2.6) 33.3 (3.8) 33.8 (2.5) 37.7 (4.5)
1 Mbit/s 229.1 (3.4) 104.1 (1.3) 143.2 (3.3) 186.7 (2.5)

100 Kbit/s 2713.3 (1.5) 750.4 (5.4) 1347.6 (29.6) 2033.4 (124.6)

Berlioz

100 Mbit/s 8.2 (0.3) 8.9 (0.2) 9.0 (0.3) 8.8 (0.2)
10 Mbit/s 12.9 (0.8) 9.3 (0.3) 9.9 (0.4) 12.0 (1.6)
1 Mbit/s 94.0 (0.3) 30.2 (0.6) 50.8 (0.3) 71.6 (0.5)

100 Kbit/s 1281.2 (54.6) 216.8 (0.5) 524.4 (0.4) 1090.5 (52.6)

The above results show how long it took for each trace to complete at different
portable device states as well as at different bandwidth settings. The column labeled
“No Device” shows the time taken for trace execution when no portable device was
present and all data had to be fetched over the network. The column labeled 100%
shows the results when all of the required data was present on the storage device and
only metadata (i.e. stat information) was fetched across the network. The rest of
the columns show the cases where the lookaside device had varying fractions of the
working set. Each data point is the mean of three trials; standard deviations are in
parentheses.

Table 3.9: Time for Trace Replay
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33% of the files present in the snapshot (a difference of 0.6 seconds). As mentioned

earlier in Section 3.4.1, the system should suppress lookaside in such scenarios.

Even with 100% success in lookaside caching, the 100 Kbit/s numbers for all of

the traces are substantially greater than the corresponding 100 Mbit/s numbers. This

is due to the large number of metadata accesses, each incurring RPC latency.

3.5 Summary

“Sneakernet,” the informal term for manual transport of data, is alive and well today

in spite of advances in networking and distributed file systems. Carrying data on a

portable storage device gives a user full confidence that she will be able to access that

data anywhere, regardless of network quality, network or server outages, and machine

configuration. Unfortunately, this confidence comes at a high price. Remembering

to carry the right device, ensuring that data on it is current, tracking updates by

collaborators, and guarding against loss, theft and damage are all burdens borne by

the user. Most harried mobile users would gladly delegate these chores if only they

could be confident that they would have easy access to their critical data at all times

and places.

Lookaside caching suggests a way of achieving this goal. By assigning the true

home of a user’s data to be in a distributed file system, it allows them to make a copy

of their critical data on a portable storage device. If users find themselves needing

to access the data in a desperate situation, they can just use the device directly.

In all other situations, the device can be used for lookaside caching. On a slow

network or with a heavily loaded server, users will benefit from improved performance.

With network or server outages, they will benefit from improved availability if the

distributed file system supports disconnected operation and if they had hoarded all

their metadata.

Users make the decision to use the device directly or via lookaside caching at

the point of use, not a priori. This preserves maximum flexibility up front, when

there may be uncertainty about the exact future locations where the user will need

to access the data. Lookaside caching thus integrates portable storage devices and

distributed file systems in a manner that combines their strengths. It preserves the
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intrinsic advantages of performance, availability and ubiquity possessed by portable

devices, while simultaneously preserving the consistency, robustness and ease of shar-

ing/collaboration provided by distributed file systems.

One can envision many extensions to lookaside caching. For example, the client

cache manager could track portable device state and update stale files automatically.

This would require a binding between the name space on the device and the name

space of the distributed file system. With this change, a portable device effectively

becomes an extension of the client’s cache. Another extension would be to support

lookaside caching on individual blocks of a file rather than on a whole-file basis. While

this is conceptually more general, it is not clear how useful it would be in practice

because parts of files would be missing if the portable device were to be used directly

rather than via lookaside.

Overall, the current design of lookaside caching represents a sweet spot in the

space of design tradeoffs. It is conceptually simple, easy to implement, and toler-

ant of human error. It provides good performance and availability benefits without

compromising the strengths of portable storage devices or distributed file systems.
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Chapter 4

Improving Database Performance

in Multi-Tiered Architectures

4.1 Introduction

As the World Wide Web has grown, many web sites have decentralized their data

and functionality by pushing them to the edges of the Internet. Today, eBusiness

systems often use a three-tiered architecture consisting of a front-end web server,

an application server, and a back-end database server. Figure 4.1 illustrates this

architecture. The first two tiers can be replicated close to a concentration of clients

at the edge of the Internet. This improves user experience by lowering end-to-end

latency and reducing exposure to backbone traffic congestion. It can also increase

the availability and scalability of web services.

However, an increasing fraction of web content is dynamically generated from

back-end relational databases. Even when database content remains unchanged, with-

out application-specific knowledge, dynamic content is not cacheable by web browsers

or by intermediate caching servers such as Akamai [3]. In a multi-tiered architecture,

each web request can therefore stress the WAN link between the web server and

the database and can cause user experience to be highly variable. Replication of the

database is not feasible either, because of the difficult task of simultaneously providing

strong consistency, availability, and tolerance to network partitions in a distributed

database system [27]. Due to this difficulty, previous attempts in caching dynamic
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Figure 4.1: Multi-Tier Architecture

database content have generally weakened transactional semantics [6, 9] or required

application modifications [59, 133]. As a result, databases tend to be centralized

to meet the strong consistency requirements of many eBusiness applications such as

banking, finance, and online retailing [165]. In the absence of both caching and repli-

cation, WAN bandwidth can easily become a limiting factor in the performance and

scalability of data-intensive applications.

This chapter reports on a new solution that takes the form of a database-agnostic

middleware layer called Ganesh. Ganesh makes no effort to semantically interpret

the contents of queries or their results. Instead, it relies exclusively on content-

addressable techniques to detect similarities with previous results. While content-

addressable techniques were used in the CASPER and Lookaside Caching systems

described in Chapters 2 and 3, optimizing these systems was relatively straightforward

as they maintained consistency at a per-file level. These systems are also characterized

by relatively large objects where updates, deletes, and insertions usually occur in-

place and therefore domain-independent methods could be used to detect similarity

in opaque objects. However, applying these techniques to relational databases is more

complex as the data is stored at much finer levels of granularity, has rich internal

structure, and updates are less predictable.

At least three challenges are faced in applying hash-based similarity detection to

databases query results. First, previous work in this space has traditionally viewed

storage content as uninterpreted bags of bits with no internal structure. This allows

hash-based techniques to operate on long, contiguous runs of data for maximum
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effectiveness. In contrast, relational databases have rich internal structure that may

not be as amenable to hash-based similarity detection. These difficulties preclude

straightforward application of previous results from distributed file systems to the

domain of relational databases. Second, relational databases have very tight integrity

and consistency constraints that must not be compromised by the use of hash-based

techniques. Third, the source code of commercial databases is typically not available.

This is in contrast to previous work which presumed availability of source code.

The experimental results show that Ganesh, while conceptually simple, can im-

prove performance significantly at bandwidths representative of today’s commercial

Internet. On benchmarks modeling multi-tiered web applications, the throughput

improvement was as high as tenfold for data-intensive workloads. For workloads

that were not data-intensive, throughput improvements of up to twofold were ob-

served. Even when bandwidth was not a constraint, Ganesh had low overhead and

did not hurt performance. The experiments also confirmed that exploiting the struc-

ture present in database results is crucial to performance improvement.

First, Ganesh’s approach to detecting similarity is described in Section 4.2. The

design and implementation behind Ganesh’s transparent proxy-based solution is pre-

sented in Section 4.3. The evaluation of Ganesh is then reported in Sections 4.4.

Finally, this chapter concludes with a brief summary of the findings in Section 4.5.

4.2 Detecting Similarity

Ganesh’s focus is on efficient transmission of results by discovering similarities with

the results of previous queries. As SQL queries can generate large results, content-

addressable techniques lend themselves well to the problem of efficiently transferring

these large results across bandwidth constrained links. By exploiting redundancy in

the result stream, Ganesh can avoid transmitting result fragments that are already

present at the query site. Redundancy can arise naturally in many different ways.

For example, a query repeated after a certain interval may return a different result

because of updates to the database; however, there may be significant commonality

in the two results. As another example, a user who is refining a search may generate

a sequence of queries with overlapping results. When Ganesh detects redundancy, it

suppresses transmission of the corresponding result fragments. Instead, it transmits
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a much smaller digest of those fragments and lets the query site reconstruct the

result through hash lookups in a cache of previous results. In effect, Ganesh uses

computation at the edges to reduce Internet communication.

One of the key design decisions in Ganesh was how similarity would be detected.

There are many potential ways to decompose a result into fragments. The optimal

way is, of course, the one that results in the smallest possible object for transmission

for a given query’s results. Finding this optimal decomposition was a difficult problem

because of the large space of possibilities and because the optimal choice depends on

many factors such as the contents of the query’s result, the history of recent results,

and the cache management algorithm used.

When an object is opaque, the use of Rabin fingerprints [29, 108] to detect common

data between two objects has been successfully shown in the past by systems such as

LBFS [91], CASPER [149], and Lookaside Caching [150]. Rabin fingerprinting uses

a sliding window over the data to compute a rolling hash. Assuming that the hash

function is uniformly distributed, a chunk boundary is defined whenever the lower

order bits of the hash value equal some predetermined value. The number of lower

order bits used defines the average chunk size. These sub-divided chunks of the object

become the unit of comparison for detecting similarity between different objects.

As the locations of boundaries found by using Rabin fingerprints is stochastically

determined, they usually fail to align with any structural properties of the underlying

data. This is usually not a problem for storage systems that store unstructured

data. However, while the algorithm deals well with in-place updates, insertions and

deletions, it performs poorly in the presence of any reordering of data.

Figure 4.2 shows an example where two results, A and B, consisting of three rows,

have the same data but have different sort attributes. In the extreme case, Rabin

fingerprinting might be unable to find any similar data due to the way it detects

chunk boundaries. Fortunately, Ganesh can use domain specific knowledge for more

precise boundary detection. The information Ganesh exploits is that a query’s result

reflects the structure of a relational database where all data is organized as tables

and rows. It is therefore simple to check for similarity with previous results at two

granularities: first over the entire result, and then at individual rows. The end of a

row in a result serves as a natural chunk boundary. It is important to note that using

the tabular structure in results only involves a shallow interpretation of the data.
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Figure 4.2: Rabin Fingerprinting vs. Ganesh’s Chunking

Ganesh does not perform any deeper semantic interpretation such as understanding

data types, result schema, or integrity constraints.

Tuning Rabin fingerprinting for a workload can also be difficult. If the average

chunk size is too large, chunks can span multiple result rows. However, selecting a

smaller average chunk size increases the amount of metadata required to the describe

the results. This, in turn, would decrease the savings obtained via its use. Rabin

fingerprinting also needs two computationally-expensive passes over the data: once to

determine chunk boundaries and once again to generate cryptographic hashes for the

chunks. Ganesh only needs a single pass for hash generation as the chunk boundaries

are provided by the data’s natural structure.

The performance comparison in Section 4.4.4 shows that Ganesh’s row-based al-

gorithm outperforms Rabin fingerprinting. Given that previous work has already

shown that Rabin fingerprinting performs better than gzip [91], this chapter does not

compare Ganesh to compression algorithms.

4.3 Achieving Transparency

The key factor influencing Ganesh’s design was the need for it to be completely

transparent to all components of a typical eBusiness system: web servers, application

servers, and database servers. Without this, Ganesh stands little chance of having a

significant real-world impact. Requiring modifications to any of the above components

would raise the barrier for entry of Ganesh into an existing system, and thus reduce

its chances of adoption. Preserving transparency is simplified as Ganesh is purely a

performance enhancement, not a functionality or usability enhancement.
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This section first discusses how the Ganesh architecture makes it completely invis-

ible to all components of a multi-tier system. Then, it explains Ganesh’s proxy-based

caching approach. Finally, the data flow for detecting similarity is described.

4.3.1 Proxy-Based Interpositioning

Agent interposition [71] was chosen as the architectural approach to realizing Ganesh’s

goal. This approach relies on the existence of a compact programming interface that

is already widely used by target software. It also relies on a mechanism to easily add

new code without disrupting existing module structure.

These conditions are easily met in Ganesh’s context because of the popularity of

standardized interfaces. For example, the widely used Java Database Connectivity

(JDBC) API [113] allows Java applications to access a wide variety of databases

and even tabular data repositories such as flat files. Access to data is provided by

JDBC drivers that translate between the JDBC API and the database communication

mechanism. Figure 4.3(a) shows how JDBC is typically used in an application.

As the JDBC interface is standardized, one JDBC driver can be substituted for

another without application modifications. The JDBC driver thus becomes the nat-

ural module to exploit for code interposition. Java’s support for Remote Method

Invocation (RMI) completes the picture by simplifying code placement.

Figure 4.3(b) shows how Ganesh is interposed. At the web and application server

end of the WAN, the JDBC driver is replaced with a Ganesh JDBC driver that

presents the same interface to the application. The Ganesh driver maintains an in-

memory cache of result fragments from previous queries and performs reassembly of

results. At the database end of the WAN, a new process called the Ganesh proxy

is added. This proxy, which can be shared by multiple front-end nodes, consists of

two parts: code to detect similarity in result fragments and the original native JDBC

driver that communicates with the database. The use of a proxy at the database

end makes Ganesh database-agnostic and simplifies prototyping and experimentation.

Ganesh is thus able to work with a wide range of databases and applications, requiring

no modifications to either. While not currently implemented, the same concepts apply

to other standardized interfaces such as ODBC [60].
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Figure 4.3: Native vs. Ganesh Architecture

4.3.2 Proxy-Based Caching

The native JDBC driver shown in Figure 4.3(a) is a lightweight code component

supplied by the database vendor. Its main function is to mediate communication

between the application and the remote database. It forwards queries, buffers entire

results, and responds to application requests to view parts of results.

The Ganesh JDBC driver shown in Figure 4.3(b) presents the application with an

interface identical to that provided by the native driver. It provides the ability to re-

construct results from compact hash-based descriptions sent by the proxy. To perform

this reconstruction, the driver maintains an in-memory cache of recently-received re-

sults. This cache is only used as a source of result fragments in reconstructing results.

No attempt is made by the Ganesh driver or proxy to track database updates. The

lack of cache consistency does not hurt correctness as a description of the results is

always fetched from the proxy — at worst, there will be no performance benefit from

using Ganesh. Stale data is simply paged out of the cache over time.

The Ganesh proxy interacts with the database via the native JDBC driver, which

remains unchanged between Figures 4.3(a) and (b). The database is thus completely

unaware of the existence of the proxy. The proxy does not examine any queries re-

ceived from the Ganesh driver but passes them to the native driver. Instead, the
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Figure 4.4: Dataflow for Result Handling

proxy is responsible for inspecting database output received from the native driver,

detecting similar results, and generating hash-based encodings of these results when-

ever enough similarity is found.

To generate a hash-based encoding, the proxy must be aware of what result frag-

ments are available in the Ganesh driver’s cache. One approach is to be optimistic,

and to assume that all result fragments are available. This will result in the smallest

possible initial transmission of a result. However, in cases where there is little overlap

with previous results, the Ganesh driver will have to make many calls to the proxy

during reconstruction to fetch missing result fragments. To avoid this situation, the

proxy loosely tracks the state of the Ganesh driver’s cache. Since both components

are under Ganesh’s control, it is relatively simple to do this without resorting to

gray-box techniques [13] or explicit communication for maintaining cache coherence.

Instead, the proxy simulates the Ganesh driver’s cache management algorithm and

uses this to maintain a list of hashes for which the Ganesh driver is likely to possess

the result fragments. In case of mistracking, there will be no loss of correctness but

there will be extra round-trip delays to fetch the missing fragments. If the client

detects loss of synchronization with the proxy, it can ask the proxy to reset the state

shared between them. Also note that the proxy does not need to keep the result

fragments themselves, only their hashes. This allows the proxy to remain scalable

even when it is shared by many front-end nodes.
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4.3.3 Encoding and Decoding Results

The Ganesh proxy receives database output as Java objects from the native JDBC

driver. It examines all objects to see if ResultSet Java objects, a data type used to

store results from database queries, are present. If a ResultSet object is found, it is

shrunk as discussed below. All other Java objects are passed through unmodified.

The proxy converts all ResultSet objects it sees into objects of a new type

called RecipeResultSet. The term “recipe” is used for this compact description

of a database result because of its similarity to the file recipes used by the CASPER

file system described in Chapter 2. The conversion replaces each result fragment that

is likely to be present in the Ganesh driver’s cache by a SHA-1 hash of that fragment.

Previously unseen result fragments are retained verbatim. The proxy also retains

hashes for the new result fragments as they will be present in the driver’s cache in

the future. It should be noted that the proxy only caches hashes for result fragments

and does not cache recipes.

Based on the discussion in Section 4.2, the proxy first checks for entire result sim-

ilarity and then at the row level before constructing the RecipeResultSet. If the en-

tire result is predicted to be present in the Ganesh driver’s cache, the RecipeResultSet

is simply a single hash of the entire result. Otherwise, it contains hashes for those

rows predicted to be present in that cache; all other rows are retained verbatim. If

the proxy estimates an overall space savings, it will perform a serialization operation,

the Java equivalent of marshaling, and transmit the RecipeResultSet. Otherwise

the original ResultSet is transmitted.

A reverse transformation of RecipeResultSet objects into ResultSet objects is

performed by the Ganesh driver. Figure 4.4 illustrates ResultSet handling at both

ends. Each SHA-1 hash found in a RecipeResultSet is looked up in the local cache

of result fragments. On a hit, the hash is replaced by the corresponding fragment. On

a miss, the driver contacts the Ganesh proxy to fetch the fragment. All previously

unseen result fragments that were retained verbatim by the proxy are hashed and

added to the result cache.

There should be very few misses if the proxy has accurately tracked the Ganesh

driver’s cache state. A future optimization would be to batch the fetch of missing

fragments. This would be valuable when there are many small missing fragments in
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Benchmark Dataset Details

500,000 Users, 12,000 Stories
BBOARD 2.0 GB 3,298,000 Comments

1,000,000 Users
AUCTION 1.3 GB 34,000 Items

Table 4.1: Benchmark Dataset Details

a high-latency WAN. Once the transformation is complete, the fully reconstructed

ResultSet object is passed up to the application.

4.4 Performance Improvement

Three questions follow naturally from the goals and design of Ganesh:

• First, can performance be improved significantly by exploiting similarity across

database results?

• Second, how important is Ganesh’s structural similarity detection relative to

Rabin fingerprinting-based similarity detection?

• Third, is the overhead of Ganesh’s proxy-based design acceptable?

The section answers these question through controlled experiments with the Ganesh

prototype. The evaluation is based on two benchmarks [10] that have been widely

used by other researchers to evaluate various aspects of multi-tier and eBusiness ar-

chitectures. Prior work has used these benchmarks to explore the performance of

different architectures for serving dynamic content [37], the evaluation of method-

caching in multi-tier systems [102], and the development of recovery techniques for

Internet services [33]. The first benchmark, BBOARD, is modeled after Slashdot, a

technology-oriented news site. The second benchmark, AUCTION, is modeled after

eBay, an online auction site. Both benchmarks are maintained by the Java Mid-

dleware Open Benchmarking (JMOB) group of the ObjectWeb Consortium [97], an

international open source community hosted by INRIA. In both benchmarks, most

content is dynamically generated from information stored in a database. Details of

the datasets used can be found in Table 4.1.
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For these benchmarks, the two metrics used to quantify the performance improve-

ment obtainable through the use of Ganesh were throughput, from the perspective of

the web server, and average response time from the perspective of the client. Through-

put is measured in terms of the number of client requests that can be serviced per

second.

The next section describes the experimental procedure used. The results from the

two benchmarks, used to answer the first question posed above, are then presented in

Sections 4.4.2 and 4.4.3. The importance of using structure-based similarity detection,

the answer to the second question, is presented in Section 4.4.4. Finally, to address the

third question, the overhead of the proxy-based design in discussed in Section 4.4.5.

4.4.1 Experimental Methodology

Both benchmarks involve a synthetic workload of clients accessing a web server. The

number of clients emulated is an experimental parameter. Each emulated client runs

an instance of the benchmark in its own thread, using a matrix to transition between

different benchmark states. The matrix defines a stochastic model with probabilities

of transitioning between the different states that represent typical user actions. An

example transition is a user logging into the AUCTION system and then deciding on

whether to post an item for sale or bid on active auctions. Each client also models

user think time between requests. The think time is modeled as an exponential

distribution with a mean of 7 seconds.

Ganesh is evaluated along two axes: number of clients and WAN bandwidth.

Higher loads are especially useful in understanding Ganesh’s performance when the

CPU or disk of the database server or proxy is the limiting factor. A previous study

has shown that approximately 50% of the wide-area Internet bottlenecks observed

had an available bandwidth under 10 Mbit/s [4]. Based on this work, the eval-

uation focuses on the WAN bandwidth of 5 Mbit/s with 66 ms of round-trip la-

tency, representative of severely constrained network paths, and of 20 Mbit/s with 33

ms of round-trip latency, representative of a moderately constrained network path.

Ganesh’s performance at 100 Mbit/s with no added round-trip latency is also re-

ported. This bandwidth, representative of an unconstrained network, is especially

useful in revealing any potential overhead of Ganesh in situations where WAN band-
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width is not the limiting factor. For each combination of number of clients and WAN

bandwidth, results from the two configurations listed below were measured:

• Native: This configuration corresponds to Figure 4.3(a). Native avoids Ganesh’s

overhead in using a proxy and performing Java object serialization.

• Ganesh: This configuration corresponds to Figure 4.3(b). For a given number

of clients and WAN bandwidth, comparing these results to the corresponding

Native results gives the performance benefit due to Ganesh.

The metric used to quantify the improvement in throughput is the number of

client requests that can be serviced per second. The metric used to quantify Ganesh’s

overhead is the average response time for a client request. For all of the experiments,

the Ganesh driver used by the application server used a cache size of 100,000 items1.

The proxy was effective in tracking the Ganesh driver’s cache state; for all of the

experiments, the miss rate on the driver never exceeded 0.7%.

Experimental Configuration

The experimental setup used for the benchmarks can be seen in Figure 4.5. All ma-

chines were 3.2 GHz Pentium 4s (with Hyper-Threading enabled.) With the exception

of the database server, all machines had 2 GB of SDRAM and ran the Fedora Core

Linux distribution. The database server had 4 GB of SDRAM.

Apache’s Tomcat was used as both the application server that hosted the Java

Servlets and the web server. Both benchmarks used Java Servlets to generate the

1As Java does not provide a sizeof() operator to determine memory usage, Java caches limit
their size based on the number of objects. The maximum memory footprint of cache dumps taken
at the end of the experiments never exceeded 212 MB.
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dynamic content. The database server used the open source MySQL database. For

the native JDBC drivers, the Connector/J driver provided by MySQL was used. The

application server used Sun’s Java Virtual Machine as the runtime environment for

the Java Servlets. The sysstat tool [142] was used to monitor the CPU, network,

disk, and memory utilization on all machines.

The machines were connected by a switched gigabit Ethernet network. As shown

in Figure 4.5, the front-end web and application server was separated from the proxy

and database server by a NetEm router [66]. This router controls the bandwidth and

latency settings on the network. The NetEm router was a standard PC with two

network cards running the Linux Traffic Control and Network Emulation software.

The bandwidth and latency constraints were only applied to the link between the

application server and the database for the native case and between the application

server and the proxy for the Ganesh case. There was no communication between

the application server and the database with Ganesh as all data flowed through the

proxy. As the focus of the evaluation was on the WAN link between the application

server and the database, there were no constraints on the link between the simulated

test clients and the web server.

4.4.2 The BBOARD Benchmark

The BBOARD benchmark, also known as RUBBoS (Rice University Bulletin Board

System) [10], models Slashdot, a popular technology-oriented web site. Slashdot

aggregates links to news stories and other topics of interest found elsewhere on the

web. In addition to being a news aggregation site, Slashdot also allows users to

customize their view of the site. The site also serves as a bulletin board by allowing

users to comment on the posted stories in a threaded conversation form. It is not

uncommon for a story to gather hundreds of comments in a matter of hours. The

BBOARD benchmark is similar to the site and models the activities of a user, including

read-only operations such as browsing the stories of the day, browsing story categories,

and viewing comments as well as write operations such as new user registration,

adding and moderating comments, and story submission.

The benchmark consists of three different phases: a short warm-up phase, a run-

time phase representing the main body of the workload, and a short cool-down phase.

This chapter only reports results from the runtime phase. The warm-up phase is im-
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portant in establishing dynamic system state, but measurements from that phase are

not significant for the evaluation. The cool-down phase is solely for allowing the

benchmark to shut down.

The warm-up, runtime, and cool-down phases took 2 minutes, 15 minutes, and

2 minutes respectively. Ganesh was tested with four client configurations where the

number of test clients was set to 400, 800, 1200, and 1600. The benchmark is available

in a Java Servlets and PHP version and has different datasets; Ganesh was evaluated

using the Java Servlets version and the Expanded dataset.

The BBOARD benchmark defines two different workloads. The first, the Authoring

mix, consists of 70% read-only operations and 30% read-write operations. The second,

the Browsing mix contains only read-only operations.

Authoring Mix

Figures 4.6 (a) and (b) present the average number of requests serviced per second and

the average response time for these requests as perceived by the clients for BBOARD’s

Authoring Mix.

As Figure 4.6 (a) shows, Native easily saturates the 5 Mbit/s link. At 400 clients,

the Native solution delivers 29 requests/sec with an average response time of 8.3 sec-

onds. Native’s throughput drops with an increase in the number of test clients as

clients timeout due to congestion at the application server. Usability studies have

shown that response times above 10 seconds cause the user to move on to other

tasks [87, 169]. Based on these numbers, increasing the number of test clients makes

the Native system unusable. Ganesh at 5 Mbit/s, however, delivers a twofold im-

provement with 400 test clients and a fivefold improvement at 1200 clients. Ganesh’s

performance drops slightly at 1200 and 1600 clients as the network becomes satu-

rated. Compared to Native, Figure 4.6 (b) shows that Ganesh’s response times are

substantially lower with sub-second response times at 400 clients.

Figure 4.6 (a) also shows that for 400 and 800 test clients Ganesh at 5 Mbit/s

has the same throughput and average response time as Native at 20 Mbit/s. Only

at 1200 and 1600 clients does Native at 20 Mbit/s deliver higher throughput than

Ganesh at 5 Mbit/s.

Comparing both Ganesh and Native at 20 Mbit/s, it can be seen that Ganesh
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(c) Throughput: Browsing Mix (d) Response Time: Browsing Mix

All results are the mean of three trials. The maximum standard deviation for through-
put and response time was 9.8% and 11.9% respectively of the corresponding mean.

Figure 4.6: BBOARD Benchmark - Throughput and Average Response Time

is no longer bandwidth constrained and delivers up to a twofold improvement over

Native at 1600 test clients. As Ganesh does not saturate the network with higher

test client configurations, at 1600 test clients, its average response time is 0.1 seconds

rather than Native’s 7.7 seconds.

As expected, there are no visible gains from Ganesh at the high bandwidth case

of 100 Mbit/s where the network is no longer the bottleneck. Ganesh, however, still

tracks Native in terms of throughput. Due to the overhead of the proxy, the average

response time is higher for Ganesh. The absolute difference, however, is in between

0.007 and 0.036 seconds and would be imperceptible to the end-user.
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Browsing Mix

Figures 4.6 (c) and (d) present the average number of requests serviced per second and

the average response time for these requests as perceived by the clients for BBOARD’s

Browsing Mix.

Regardless of the test client configuration, Figure 4.6 (c) shows that Native’s

throughput at 5 Mbit/s is limited to 10 reqs/sec. Ganesh at 5 Mbit/s with 400

test clients, delivers more than a sixfold increase in throughput. The improvement

increases to over an elevenfold increase at 800 test clients before Ganesh saturates

the network. Further, Figure 4.6 (d) shows that Native’s average response time of

35 seconds at 400 test clients makes the system unusable. These high response times

further increase with the addition of test clients. In comparison, even with the 1600

test client configuration, Ganesh delivers an average response time of 8.2 seconds.

Surprisingly, due to the data-intensive nature of the Browsing mix, Ganesh at

5 Mbit/s performs much better than Native at 20 Mbit/s. Further, as shown in

Figure 4.6 (d), while the average response time for Native at 20 Mbit/s is acceptable

at 400 test clients, it is unusable with 800 test clients and shows an average response

time of 15.8 seconds. Like the 5 Mbit/s case, this response time increases with the

addition of extra test clients.

Ganesh at 20 Mbit/s and both Native and Ganesh at 100 Mbit/s are not band-

width limited. However, performance plateaus out after 1200 test clients due to the

database CPU being saturated.

Filter Variant

Native performance for the BBOARD benchmark was surprising. At the bandwidth of

5 Mbit/s, Native performance was lower than what had been expected. It turned out

the benchmark code that displays stories read all the comments associated with the

particular story from the database and only then performed some post-processing to

select the comments to be displayed. While this is exactly the behavior of SlashCode,

the code base behind the Slashdot web site, the BBOARD benchmark was modified to

perform some pre-filtering at the database. This modified benchmark, named the

Filter Variant, models a developer who applies optimizations at the SQL level to
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transfer less data. The results from this benchmark are presented in Figure 4.7 and

are briefly summarized below.

For the Authoring mix, at 800 test clients at 5 Mbit/s, Figure 4.7 (a) shows that

Native’s throughput increases by 85% when compared to the original benchmark

while Ganesh’s improvement is smaller at 15%. Native’s performance drops above

800 clients as the test clients time out due to high response times. The most signifi-

cant gain for Native is seen at 20 Mbit/s. At 1600 test clients, when compared to the

original benchmark, Native sees a 73% improvement in throughput and a 77% reduc-

tion in average response time. While Ganesh sees no improvement when compared

to the original, it still processes 19% more requests/sec than Native. Thus, while the

optimizations were more helpful to Native, Ganesh can still improve performance.

For the Browsing mix, Figures 4.7 (c) and (d) show that Native again benefits at

the bandwidth of 20 Mbit/s. When compared to the original benchmark, at 400 test

clients, Native sees a 53% throughput improvement and an 80% reduction in average

response time. However, it still saturates the network and the addition of extra clients

only increases the average response time. While the overall gain due to Ganesh at 20

Mbit/s decreases, Figure 4.7 (c) shows that it can still deliver more than a fourfold

throughput improvement at 1600 test clients.

A side-effect of the benchmark optimization was that it decreased the load on the

database CPU. Therefore, when comparing Figure 4.6 (c) and Figure 4.7 (c), it can

be seen that Ganesh at 20 Mbit/s as well as Native and Ganesh at 100 Mbit/s, can

deliver a higher throughput than the original benchmark.

4.4.3 The AUCTION Benchmark

The AUCTION benchmark, also known as RUBiS (Rice University Bidding System) [10],

models eBay, the online auction site. The eBay web site is used to buy and sell items

via an auction format. The main activities of a user include browsing, selling, or

bidding for items. Modeling the activities on this site, this benchmark includes read-

only activities such as browsing items by category and by region, as well as read-write

activities such as bidding for items, buying and selling items, and leaving feedback

on completed transactions.

As with BBOARD, the benchmark consists of three different phases. The warm-up,
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All results are the mean of three trials. The maximum standard deviation for through-
put and response time was 7.2% and 11.5% respectively of the corresponding mean.

Figure 4.7: Filter BBOARD Benchmark - Throughput and Average Response Time

runtime, and cool-down phases for this experiment took 1 minute and 30 seconds, 15

minutes, and 1 minute respectively. Ganesh was tested with four client configurations

where the number of test clients was set to 400, 800, 1200, and 1600. The benchmark

is available in an Enterprise Java Bean (EJB), Java Servlets, and PHP version and

has different datasets; Ganesh was evaluated with the Java Servlets version and the

Expanded dataset.

The AUCTION benchmark defines two different workloads. The first, the Bidding

mix, consists of 70% read-only operations and 30% read-write operations. The second,

the Browsing mix contains only read-only operations.
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(c) Throughput: Browsing Mix (d) Response Time: Browsing Mix

All results are the mean of three trials. The maximum standard deviation for through-
put and response time was 2.2% and 11.8% respectively of the corresponding mean.

Figure 4.8: AUCTION Benchmark - Throughput and Average Response Time

Bidding Mix

Figures 4.8 (a) and (b) present the average number of requests serviced per second and

the average response time for these requests as perceived by the clients for AUCTION’s

Bidding Mix. As mentioned earlier, the Bidding mix consists of a mixture of read

and write operations.

The AUCTION benchmark is not as data intensive as BBOARD. Therefore, most of

the gains are observed at the lower bandwidth of 5 Mbit/s. Figure 4.8 (a) shows

that the increase in throughput due to Ganesh ranges from 8% at 400 test clients to

18% with 1600 test clients. As seen in Figure 4.8 (b), the average response times for

Ganesh are significantly lower than Native ranging from a decrease of 84% at 800 test

clients to 88% at 1600 test clients.
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Figure 4.8 (a) also shows that with a fourfold increase of bandwidth from 5 Mbit/s

to 20 Mbit/s, Native is no longer bandwidth constrained and there was no perfor-

mance difference between Ganesh and Native. However, with the higher test client

configurations, the bandwidth used by Ganesh was lower than Native. Ganesh might

still be useful in these non-constrained scenarios if bandwidth is purchased on a me-

tered basis. Similar results were seen for the 100 Mbit/s scenario.

Browsing Mix

For AUCTION’s Browsing Mix, Figures 4.8 (c) and (d) present the average number

of requests serviced per second and the average response time for these requests as

perceived by the clients.

Again, most of the gains are observed at lower bandwidths. At 5 Mbit/s, Native

and Ganesh deliver similar throughput and response times with 400 test clients. While

the throughput for both remains the same at 800 test clients, Figure 4.8 (d) shows

that Ganesh’s average response time is 62% lower than Native. Native saturates the

link at 800 clients and adding extra test clients only increases the average response

time. Ganesh, regardless of the test client configuration, is not bandwidth constrained

and maintains the same response time. At 1600 test clients, Figure 4.8 (c) shows that

Ganesh’s throughput is almost twice that of Native.

At the higher bandwidths of 20 and 100 Mbit/s, neither Ganesh nor Native are

bandwidth limited and both deliver equivalent throughput and response times.

4.4.4 Structural vs. Rabin Similarity

In this section, the second question raised in Section 4.4 is addressed: How impor-

tant is Ganesh’s structural similarity detection relative to Rabin fingerprinting-based

similarity detection? To answer this question, microbenchmarks and the BBOARD and

AUCTION benchmarks were used. As Ganesh always performed better than Rabin

fingerprinting, this section only presents the results from the BBOARD benchmark.
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Benchmark Orig. Size Ganesh Size Rabin Size

SelectSort1 223.6 MB 5.4 MB 219.3 MB

SelectSort2 223.6 MB 5.4 MB 223.6 MB

Table 4.2: Similarity Microbenchmarks

Microbenchmarks

Two microbenchmarks show an example of the effects of data reordering on Rabin

fingerprinting algorithm. In the first micro-benchmark, SelectSort1, a query with a

specified sort order selects 223.6 MB of data spread over approximately 280 K rows.

The query is then repeated with a different sort attribute. While the same number

of rows and the same data is returned, the order of rows is different. In such a

scenario, a large amount of similarity is expected between both results. As Table 4.2

shows, Ganesh’s row-based algorithm achieves a 97.6% reduction while the Rabin

fingerprinting algorithm, with the average chunk size parameter set to 4 KB, only

achieves a 1% reduction. The reason, as shown earlier in Figure 4.2, is that with

Rabin fingerprinting, the spans of data between two consecutive boundaries usually

cross row boundaries. With the order of the rows changing in the second result and

the Rabin fingerprints now spanning different rows, the algorithm is unable to detect

significant similarity. The small gain seen is mostly for those single rows that are

large enough to be broken into multiple chunks.

SelectSort2, another micro-benchmark, executed the same queries but increased

the minimum chunk size of the Rabin fingerprinting algorithm. As can be seen in

Table 4.2, even the small gain from the previous microbenchmark disappears as the

minimum chunk size becomes greater than the average row size. While these problems

can be partially addressed by dynamically varying the parameters of the Rabin finger-

printing algorithm, this can be computationally expensive, especially in the presence

of changing workloads.

Application Benchmarks

The BBOARD benchmark, described in Section 4.4.2, was executed on two versions of

Ganesh: the first with Rabin fingerprinting used as the chunking algorithm and the
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Figure 4.9: Normalized Comparison of Ganesh vs. Rabin - BBOARD Browsing Mix

second with Ganesh’s row-based algorithm. Rabin’s results for the Browsing Mix are

normalized to Ganesh’s results and presented in Figure 4.9.

As Figure 4.9 (a) shows, at 5 Mbit/s, independent of the test client configuration,

Rabin significantly underperforms Ganesh. This happens because of a combination of

two reasons. First, as outlined in Section 4.2, Rabin finds less similarity as it does not

exploit the result’s structural information. Second, this benchmark contained some

queries that generated large results. In this case, Rabin, with a small average chunk

size, generated a large number of objects that evicted other useful data from the

cache. In contrast, Ganesh was able to detect these large rows and correspondingly

increase the size of the chunks. This was confirmed as cache statistics showed that

Ganesh’s hit ratio was roughly three times that of Rabin. Throughput measurements

at 20 Mbit/s were similar with the exception of Rabin’s performance with 400 test

clients. In this case, Ganesh was not network limited and, in fact, the throughput

was the same as 400 clients at 5 Mbit/s. Rabin, however, took advantage of the

bandwidth increase from 5 to 20 Mbit/s to deliver a slightly better performance. At

100 Mbit/s, Rabin’s throughput was almost similar to Ganesh’s, as bandwidth was

no longer a bottleneck.

The normalized response time, presented in Figure 4.9 (b), shows similar trends.
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At 5 and 20 Mbit/s, the addition of test clients decreases the normalized response

time as Ganesh’s average response time increases faster than Rabin’s. However, at no

point does Rabin outperform Ganesh. Note that at 400 and 800 clients at 100 Mbit/s,

Rabin does have a higher overhead even when it is not bandwidth constrained. As

mentioned in Section 4.2, this is due to the fact that Rabin has to hash each ResultSet

twice. The overhead disappears with 1200 and 1600 clients as the database CPU is

saturated and limits the performance of both Ganesh and Rabin.

4.4.5 Proxy Overhead

In this section, the third question raised in Section 4.4 is addressed: Is the overhead

of Ganesh’s proxy-based design acceptable? To answer this question, one needs to

concentrate on its performance at the higher bandwidths. The BBOARD and AUCTION

benchmarks showed that Ganesh, when compared to Native, can deliver a substantial

throughput improvement at lower bandwidths. It is only at higher bandwidths that

latency, measured by the average response time for a client request, and throughput,

measured by the number of client requests that can be serviced per second, overheads

would be visible.

Looking at the Authoring mix of the original BBOARD benchmark, there are no

visible gains from Ganesh at 100 Mbit/s. Ganesh, however, still matches Native in

terms of throughput. While the average response time is higher for Ganesh, the

absolute difference is between 0.01 and 0.04 seconds and would be imperceptible to

the end-user. The Browsing mix shows an even smaller difference in average response

times. The results from the filter variant of the BBOARD benchmarks are similar. Even

for the AUCTION benchmark, the difference between Native’s and Ganesh’s response

time at 100 Mbit/s was never greater than 0.02 seconds. The only exception to the

above results was seen in the filter variant of the BBOARD benchmark where Ganesh

at 1600 test clients added 0.85 seconds to the average response time. Thus, even

for much faster networks where the WAN link is not the bottleneck, Ganesh always

delivers throughput equivalent to Native. While some extra latency is added by the

proxy-based design, it is usually imperceptible.
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4.5 Summary

The growing use of dynamic web content generated from relational databases places

increased demands on WAN bandwidth. Traditional caching solutions for bandwidth

and latency reduction are often ineffective for such content. This chapter shows

that the impact of WAN accesses to databases can be substantially reduced through

the Ganesh architecture without any compromise of a database’s strict consistency

semantics. The essence of the Ganesh architecture is the use of computation at the

edges to reduce communication through the Internet. Borrowing techniques from

the storage world, Ganesh is able to use content-addressable techniques to detect

similarity with previous results and send compact recipes of results rather than full

results. The design uses interposition to achieve complete transparency: clients,

application servers, and database servers are all unaware of Ganesh’s presence and

require no modification.

The experimental evaluation confirms that Ganesh, while conceptually simple,

can be highly effective in improving throughput and response time. Using two bench-

marks representative of dynamic web sites, the results show that Ganesh can increase

end-to-end throughput as much as tenfold in low bandwidth environments. The ex-

periments also confirm that exploiting the structure present in database results to

detect similarity is crucial to this performance improvement.
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Chapter 5

Improving Mobile Database Access

Without Degrading Consistency

5.1 Introduction

Relational databases lie at the core of many business processes such as inventory

control, order entry, customer relationship management, asset tracking, and resource

scheduling. A key contributor to this success is a database’s ability to provide a

consistent view of shared data across many geographically dispersed users, even in

the face of highly concurrent updates at fine granularity. Transactional semantics are

part of this consistency model.

Preserving consistency with acceptable performance under conditions of weak con-

nectivity is a difficult challenge. Indeed, it has been widely accepted since the early

days of mobile computing that shared data access involves a fundamental tradeoff

between consistency, good performance, and tolerance of poor network quality [27].

This has led to a variety of approaches [6, 9, 59, 133] that relax consistency. However,

failing to preserve consistency undermines the very attribute that makes databases

so attractive for many applications.

This chapter describes a new approach to mobile database access that avoids the

need to compromise consistency. In other words, it shows how to achieve good client

performance under conditions of weak connectivity without degrading consistency.

The critical insight is that content-addressable techniques can use the disk storage
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and processing power of a mobile client to compensate for weak connectivity. The

following sections report on the detailed design, implementation, and experimental

validation of this approach in a system called Cedar. Unlike the Ganesh system,

described in Chapter 4, which was designed to optimize multi-tiered architectures,

Cedar is targeted towards a different category of applications. It is expected that

Cedar will benefit a broad category of applications for mobile clients including those

for mobile commerce [130, 166], traveling sales people, mobile customer relationship

management [134], and disaster recovery [47].

Cedar uses a simple client-server design in which a central server holds the master

copy of the database. Cedar’s organizing principle is that even a stale client replica

can be used to reduce data transmission volume. It accomplishes this through the use

of content-addressable techniques. The volume reduction is greatest when the client

replica and the master copy are identical. However, even a grossly divergent replica

will not hurt consistency; at worst, it will hurt performance. This organizing principle

allows Cedar to use an optimistic approach to solving the difficult problem of database

replica control [20, 21]. At infrequent intervals when a client has excellent connectivity

to the server (which may occur hours or days apart), its replica is refreshed from the

master copy. Cedar primarily targets laptop-class machines as mobile clients, but this

work also explore Cedar’s applicability to PDA-class mobile clients. Since laptop disk

sizes can be 100GB or more today, replicating the entire database is often feasible.

For databases that are too large, Cedar provides support for creating a useful partial

replica. Cedar is implemented in Java, and runs on Linux as well as Windows. It

should also work on any other operating system that supports Java.

On a Cedar client, a select query is first executed on the local replica to obtain

a tentative result. Using content-addressable techniques, the client constructs a com-

pact summary of the tentative result and sends it to the server along with the query.

The query is re-executed at the server to obtain the authoritative result. The server

then constructs a compact summary of the difference between the tentative and au-

thoritative results and sends it back to the client. If the client and server are in sync,

there will be no difference between the results. The further out of sync they are, the

larger the difference in results. However, the difference is never larger than the size

of the result that would be generated without Cedar. By applying the difference to

the tentative result, the client reconstructs the authoritative result and returns it as

the response to the select query. Since applications never see tentative results, they
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perceive the same database behavior that they would without Cedar. update queries

go directly to the server without special handling.

In order to achieve transparency, Cedar’s design and implementation pay careful

attention to practical considerations. First, Cedar is completely transparent to client

applications and hence requires no changes to them. Second, databases from different

vendors can be used at the server and client. This simplifies interoperability, and

allows client and server software to be independently optimized for their respective

hardware resources and workloads. Third, Cedar does not require source code access

to any database.

5.2 Background on Wireless Wide-Area Networks

Millions of users today own personal computing devices that can access, query, and

update data stores and databases over wireless networks. The increasing availability of

wide-area connectivity options such as cellular GPRS/EDGE, EVDO, and WiMax has

encouraged the notion of access to data anywhere and anytime [80]. However, many

of these wireless technologies exhibit high variability in peak theoretical throughput,

as shown in Table 5.1. End-to-end latency is also highly variable. To make matters

worse, recent studies have shown that achievable throughput is often only 25–65% of

the theoretical maximum [40, 42], and that large drops in throughput are seen during

peak usage periods [98].

Wireless Wide-Area Network (WWAN) technologies remain important for the

foreseeable future in spite of the growing popularity of WiFi (802.11) technology.

First, WiFi coverage is limited to compact areas where dense base station infrastruc-

ture can be economically sustained. In contrast, WWAN technologies require much

less dense infrastructure that can often be piggybacked on existing cell phone infras-

tructure. Hence, they are economically sustainable over much larger geographic areas.

Second, organizational and business considerations may preclude use of WiFi. For

example, a user may not subscribe to the wireless service provider of a hotspot. As

another example, corporate security guidelines may prohibit a salesman from using

the WiFi coverage available at a customer site; hence unplanned use of WiFi might

not be possible. Third, existing WiFi infrastructure may be damaged or unusable

in situations such as disaster recovery and military operations. Rapid setup of new
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Wireless Technology Peak Theoretical Throughput

GPRS 30 – 89 Kbit/s

GPRS/EDGE 56 – 384 Kbit/s

CDMA (1xRTT) 144 Kbit/s (downlink)

64 Kbit/s (uplink)

EVDO (Rev. 0) 2,500 Kbit/s (downlink)

154 Kbit/s (uplink)

EVDO (Rev. A) 3,100 Kbit/s (downlink)

1,800 Kbit/s (uplink)

WiMax (802.16) 500 Kbit/s – 2,000 Kbit/s

(per connection)

Table 5.1: Wireless WAN Technologies Prevalent in 2006–07

wireless infrastructure is feasible only if it is sparse. This typically implies reliance

on WWAN technologies.

5.3 Achieving Transparency

As mentioned earlier, a key factor influencing Cedar’s design was the need for it to be

completely transparent to both applications and databases. This lowers the barrier for

adoption of Cedar, and broadens its applicability. Cedar uses a proxy-based design to

meet this goal. The task is simplified by the fact that Cedar is purely a performance

enhancement, and not a functionality or usability enhancement.

5.3.1 Application Transparency

Cedar does not require access to application source code. Instead, it leverages the fact

that most applications that access databases are written to a standardized API. This

compact API (JDBC in the current implementation) is a convenient interposition

point for new code. Figure 5.1 shows how Cedar is interposed. On the application

end, the native database driver is replaced by Cedar’s drop-in replacement driver that

implements the same API. The driver forwards all API calls to a co-located proxy.
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Cedar JDBC Driver

Database Server
(Master Copy)Client Replica

JDBC Driver
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Network
JDBC Driver
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This figure shows how Cedar is transparently interposed into an existing client-server
system that uses JDBC. The colored boxes represent Cedar components.

Figure 5.1: Proxy-Based Cedar Implementation

This architecture is very similar to the one used by Ganesh, with the only exception

being the addition of the client-side proxy.

Figure 5.2 shows how these components interact when executing a select query.

The client proxy first executes the query on the client replica and generates a recipe,

a compact content-addressable description of the result. It then forwards the original

query and the recipe to the database server. Note that while one could combine

Cedar’s database driver and proxy for performance reasons, separating them allows

the proxy to be shared by different applications. While Cedar currently interposes on

the JDBC interface, it can also support ODBC-based C, C++, and C# applications

by using an ODBC-to-JDBC bridge.

Note that as Cedar’s focus is on improving performance without compromising

consistency, it assumes that at least weak or limited connectivity is available on the

client. It is not targeted towards applications where database access is required while

disconnected. Cedar’s central organizing principle, as stated earlier in Section 5.1, is

that even a stale client replica can be used to reduce data transmission volume. There

is no expectation that a tentative result from a client replica will be correct, only that

it will be “close” to the authoritative result at the server. Thus, the output of a client

replica is never accepted without first checking with the server. Cedar uses a “check-

on-use” or detection-based approach to replica control as in AFS-1 [126]. A “notify-

on-change” or avoidance-based approach was rejected even though it has been shown
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This figure maps Cedar’s architecture to the protocol executed for a select query.

Figure 5.2: Cedar Protocol Example

to have superior performance in file systems such as AFS-2 [68] and its successors.

There were multiple reasons for this decision. First, it reduces wasteful invalidation

traffic to a weakly-connected client in situations where most of the invalidations are

due to irrelevant update activity. Second, performance issues may arise on a busy

database server that has to actively track state on a large number of clients. Finally,

it simplifies the implementation at both the client and the server

5.3.2 Database Transparency

Similar to Ganesh’s architecture, Cedar also introduces a proxy co-located with the

database server in order to be completely transparent to the database. As Figure 5.1

shows, the client’s query and recipe is received by the server proxy. The server proxy

could either be co-located with the server or placed on a separate machine. The only

restriction is that it should be well connected to the server. This proxy re-executes the

query on the server and generates a recipe of the result. It then compares the client’s

and server’s recipe, eliminates commonality, and only sends back the differences.

In this way, the database server is totally unaware of the client replica — it is

only the server proxy that is aware. Note that the differences received from the server

84



cannot be used to update the client replica. A query might only select a subset of the

columns of each accessed table and the result would therefore only contain a partial

copy of the original rows. Using it to update the replica and tracking the partially

updated rows would be infeasible without requiring extensive database modifications.

On both the client and the database server, Cedar’s functionality was not directly

incorporated into the database. Instead, Cedar itself uses the JDBC API to access

both the server and client databases. This design choice to allow Cedar to be com-

pletely independent of the underlying database has a number of advantages. First, the

increased diversity in choice can be very useful when a mobile client lacks sufficient

resources to run a heavyweight database server. In such situations, a lightweight or

embedded database could be used on the mobile client while a production database

such as MySQL or Oracle could be used on the server. Cedar’s interoperability has

been tested with MySQL and SQLite [138], an embedded database with a small

footprint. For queries that use non-standard SQL extensions only supported by the

server, Cedar transparently ignores the failure of the replica to interpret such queries

and forwards them verbatim to the database server. Second, it makes a database’s

physical layout completely transparent to Cedar. Thus, a centralized database in a

data center can be easily replicated for scalability reasons without modifying Cedar.

5.3.3 Adaptive Interpositioning

Although a Cedar client is optimized for weakly-connected operation, it may some-

times experience good connectivity. In that situation, its low-bandwidth optimiza-

tions may be counter-productive. For example, as seen in Figure 5.2, the latency

added by executing the query twice may exceed the savings from reduced data trans-

mission volume. There may also be situations in which a mobile client is so resource-

poor that Cedar’s approach of using its disk storage and processing power to com-

pensate for weak connectivity is infeasible.

Cedar therefore adapts its behavior to available bandwidth. When the client proxy

detects a fast network, it stops handling new queries. The Cedar JDBC driver then

transparently switches to direct use of the server proxy. This eliminates the compu-

tational overhead of using content-addressable techniques and the cost of an extra

hop through the client proxy. Transactions that are currently in progress through

the proxy are completed without disruption. If, at a later point in time, the client

85



proxy detects unfavorable network conditions, it is once again transparently inter-

posed into the query handling path. The client proxy uses the packet-pair based

IGI/PTR tool [69] to measure bandwidth. Experience with the system indicates that

relatively coarse bandwidth estimation is adequate for triggering proxy state changes.

While the server proxy could also have been bypassed, this would require dynamic

substitution of the native JDBC driver for Cedar’s JDBC driver. It would be difficult

to implement this in a manner that does not disrupt queries in progress. To preserve

transparency, this optimization was not implemented. Fortunately, the measurements

shown in Section 5.6 indicate that the server proxy overhead is low.

Implementing adaptation with respect to the staleness of the client replica would

also be easy to implement. A very stale replica is likely to produce tentative results

that have little commonality with authoritative results. In that situation, it is better

to stop using the client replica until it can be brought in sync with the server. The

implementation approach is to have the client proxy track the savings from eliding

commonality. When the savings are consistently below a threshold, the interposition

of the client proxy is removed. Queries then go directly to the server proxy, as

described above.

5.4 Detecting Similarity

The next three sections examine specific aspects of Cedar’s approach to detecting

similarity. Sections 5.4.1 and 5.4.2 describe how Cedar detects commonality across

results and constructs compact recipes. Section 5.4.3 describes Cedar’s support for

populating the client replicas from where similarity is extracted.

5.4.1 Exploiting Structure in Data

Rabin fingerprinting is an excellent tool for detecting commonality across opaque

objects [29, 108]. An attractive property of this tool is that it finds commonality

even after in-place updates, insertions, and deletions are performed on an object.

Unfortunately, the data boundaries found by Rabin fingerprinting rarely aligns with

natural boundaries in structured data. This makes it less attractive for database

output, which is typically organized by rows and columns. Simple reordering of rows,
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Figure 5.3: Hashing in Cedar

as might occur from a SORT BY clause in a SQL statement, can degrade the ability of

Rabin fingerprinting to find commonality.

Cedar therefore uses the approach, also used by Ganesh in Chapter 4, which

worked better than Rabin fingerprinting: the end of each row in a database result

is used as a natural chunk boundary. It is important to note that Cedar’s use of a

tabular structure in results only involves shallow interpretation of Java’s result set

data type. There is no deeper semantic interpretation such as understanding data

type values, result schema, or integrity constraints.

5.4.2 Generating Compact Recipes

As Figure 5.3 shows, Cedar finds commonality by hashing at two granularities: the

entire result and each individual row. This makes Cedar’s approach to detecting com-

monality more amenable for selections and joins. For operations such as aggregates, if

Cedar detects that the size of the recipe is larger than the tentative result, it chooses

to forgo any content-addressable optimizations and forwards only the query to the

database server.

However, for large results, the hash per row can still add up to a sizable recipe.

Cedar therefore uses a simple but effective approach to reducing the per-row contri-

bution. This approach recognizes that the entire result hash is sufficient to ensure

correctness. Since the sole purpose of a per-row hash is to support comparisons at

fine granularity, a subset of the bits in that hash is adequate to serve as a strong hint

of similarity. Hence, the recipe of a result only uses the lower n bits of each per-row

hash. When two per-row hashes match, the server proxy assumes that the corre-

sponding row already exists in the tentative result. If this is an erroneous assumption

it will be detected in the final step of the comparison process.
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After the comparison of tentative and authoritative results is complete, the server

sends the client truncated hashes for the common rows found, data for the rows known

to be missing on the client, and an untruncated hash of the authoritative result. The

client reconstructs its version of the authoritative result and verifies that its entire

hash matches that sent by the server. In the rare event that there is a mismatch, the

authoritative result is fetched verbatim from the server.

A low value of n increases the probability of a collision, and hence many verbatim

fetches. On the other hand, a large value of n renders a CAS description less compact.

Given a hash of length n bits, the probability p of a collision amongst m other hashes

is

p = 1− Pr {No Collision}

= 1−
(

2n − 1

2n

)m

Cedar currently uses a value of n = 32 bits. As only result hashes from the same

query are compared, m is expected to be small. However, even with m = 10, 000,

the probability of seeing a collision and having to refetch verbatim results from the

server would only be p = 2.3 × 10−6. It should be noted that a collision was never

encountered during the development and evaluation of Cedar.

5.4.3 Populating Client Replicas

As Cedar extracts similarity from results generated by the client replica, correctly

populating the replicas is critical to improving performance. Ideally, a client replica

would contain a complete copy of the database. However, some mobile clients may

be too resource-poor to support a full database replica. Even when resources are

adequate, there may be privacy, security, or regulatory concerns that restrict copying

an entire database to an easily-compromised mobile client. These considerations lead

to the need for creating partial client replicas. Cedar’s challenge is to help create

a partial replica that is customized for a mobile user. Fortunately, there are many

business and social practices that are likely to result in temporal locality in the query

88



stream at a Cedar client. A partial replica that is tuned to this locality will help

Cedar achieve good performance.

For example, consider a company that assigns a specific geographic territory or a

specific set of customers to each of its salesmen. The query stream generated by a

salesman’s mobile client is likely to be confined to her unique territory or unique set

of customers. Although the company’s customer database may be enormous, only a

small subset of it is likely to be relevant to a particular salesman. Similar reasoning

applies to an insurance adjuster who is visiting the homes of customers affected by

a natural disaster. There is typically a step in the workflow of claim handling that

assigns a specific adjuster to each claim. These assignments are typically made at

the granularity of many hours, possibly a whole day. For the entire duration of that

period, an adjuster is likely to only generate queries that pertain to her assignments.

Cedar’s solution is inspired by Coda’s use of hoarding to support disconnected

operation [73]. Cedar faces a simpler problem than Coda because its hoarding does

not have to be perfect. If a partial replica cannot produce the correct response to

a query, the only consequence in Cedar is poor performance. No disruptive error

handling is needed relative to availability or consistency.

Hoard Granularity

Previous implementations of hoarding have typically operated at the granularity of

individual objects, such as files or mail messages. In contrast, Cedar hoards data at

the granularity of tables and table fragments. Cedar’s approach is based on the long-

established concepts of horizontal fragmentation [39] and vertical fragmentation [95],

as shown in Figure 5.4. Horizontal partitioning preserves the database schema. It

is likely to be most useful in situations that exploit temporal locality, such as in the

sales and insurance examples mentioned earlier. Hoarding in Cedar is done through

horizontal fragmentation. If a query references a table that is not hoarded on a mobile

client, Cedar forwards that query directly to the database server.

Database Hoard Profiles

Hoarding at a Cedar client is controlled by a database hoard profile that expresses

hoard intentions within the framework of a database schema. A database hoard profile
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ID Name Address
1 John Doe 412 Avenue
2 Richard Roe 396 Road
3 Mary Major 821 Lane
4 John Stiles 701 Street
5 Jane Doe 212 Way

Original Table

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Horizonal Partitioning

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com

ID Name Address Zip Email
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Vertical Partitioning

ID Zip Email
1 15213 jd2@eg.com
2 15217 rr@eg.com
3 15232 mm@eg.com
4 94105 js@eg.com
5 94112 jd@eg.com

Figure 5.4: Horizontal and Vertical Partitioning

is an XML file that contains a list of weighted hoard attributes. Each hoard attribute

specifies a single database relation and a predicate. Cedar uses these predicates to

horizontally partition a relation. A database hoard profile may be manually created

by a user. However, it is much more likely to be created by a database administrator

or by using the tool described below.

Figure 5.5 illustrates the syntax of hoard profiles. Each hoard attribute is also

associated with a weight that indicates its importance. Cedar uses this weight to

prioritize what should be hoarded on a mobile client that has limited storage. As

tentative results are always verified with the server, supporting external referential

constraints, such as foreign keys, is not required for correctness. However, if needed,

hoard profiles can be modified to support referential cache constraints [7] by extending

hoard predicates to support cross-table relationships.

Tools for Hoarding

To specify hoard attributes, a user needs to be aware of the SQL queries that she is

likely to generate while weakly connected. It is often the case that a user does not

90



USERS(nickname, fullname, password, zip)

(a) Schema of table named USERS

<attr table="USERS" predicate="zip >= 15222 AND zip <= 15295"

weight="10"/>

(b) Hoard attribute

A hoard attribute is expressed in a notation that is almost identical to the predicate
of a WHERE clause in a SELECT query. The hoard attribute in (b) would cache all rows
of the table specified in (a) whose zip codes lie between 15222 and 15295.

Figure 5.5: Syntax of Hoard Attributes

INSERT INTO users VALUES ("jd nick", "John Doe", "jd password", 15213)

(a) Original query from log

INSERT INTO users VALUES ("string", "string", "string", number)

(b) Abstracted query produced

Figure 5.6: Query Abstraction by SLM

directly specify SQL queries, but indirectly generates them through an application. To

help the user in these situations, Cedar is accompanied by a tool called SQL Log Miner

(SLM). This tool analyzes query logs to aid in the creation of database hoard profiles.

It first abstracts queries into templates by removing unique user input, as shown

in Figure 5.6. It then analyzes the abstracted log to determine unique queries and

outputs them in frequency sorted order. SLM is also able to use a database’s EXPLAIN

feature to display queries that generate the largest results.

SLM was used to analyze database logs from a number of applications traces in-

cluding an auction benchmark [10], a bulletin board benchmark [10], and datapository.

net, a web-enabled database used for network trace analysis by the academic com-

munity. As Table 5.2 shows, the number of unique queries was very small relative to

the total number of queries. The data in Table 5.2 suggests that it may be tractable
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Total Unique Unique

Application Queries Queries %

AUCTION 115,760 41 0.04 %

BBOARD 131,062 59 0.05 %

datapository.net 9,395,117 278 0.003 %

Table 5.2: Unique Queries within Workloads

to extend SLM to automate hoard profile creation. Contextual information [111] and

data mining [164] may be additional sources of input for this automation task.

Refreshing Stale Client Replicas

As the performance improvement seen from using Cedar is dependent on finding sim-

ilarity between the client replica and that database, it is advantageous to prevent

large divergence in their stored state. For this purpose, Cedar offers two mechanisms

for bringing a client replica in sync with the database server. If a client has excel-

lent connectivity, a new replica can be created or a stale replica updated by simply

restoring a database dump created using the client’s hoard profile. Although this is

bandwidth-intensive, it tends to be faster and is the preferred approach.

To handle extended periods of weak connectivity, Cedar also provides a log-based

refresh mechanism. The database server continuously maintains a timestamped up-

date log. This can be accomplished without requiring any database changes as all

production database servers support logging today. Since logging is a lightweight op-

eration, it typically has less than a 1% impact on performance [93, page 375]. When

a client detects available bandwidth, it can obtain the log from the server and apply

all the updates since the last refresh. Bandwidth detection mechanisms can ensure

that the log fetch does not impact foreground workloads. The server allocates a finite

amount of storage for its log, and recycles this storage as needed. It is the respon-

sibility of clients to obtain log entries before they are recycled. Once a log entry is

recycled, any client that needs it has to restore its entire replica using the method

described in the previous paragraph. This refresh mechanism is not supported for

partial replicas as update queries in the log might require data that is not cached on

the client.
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5.5 Experimental Methodology

How much of a performance win can Cedar provide? The answer clearly depends on

the workload, the network quality, and on the commonality between the client replica

and the server. For resource-poor clients, it can also depend on the computational

power of the client. To obtain a quantitative understanding of this relationship, ex-

periments were conducted using both micro- and macro-benchmarks. This section

presents the benchmarks, the evaluation procedure, and the experimental setup. Re-

sults of the experiments are presented in Sections 5.6 and 5.7.

5.5.1 Benchmarks

Microbenchmarks

Sensitivity analysis was used to explore how Cedar performs with different hit rates

on the client replica. A number of single-query microbenchmarks were executed where

both the amount of data selected by the query and the fraction of the result data that

was available on the mobile client was varied. The queries in each microbenchmark

fetched approximately 0.1, 0.5, and 1 MB of data with the results being equally

distributed over 100 rows. For each of the microbenchmarks, the fraction of “fresh”

data present on the mobile client was varied between 0% and 100%. For example, in

the 60% case, the client replica was populated with 60% of data that would match

the authoritative result generated by the server. The remaining 40% was explicity

modified such that there would be no match. As the client is unaware of the data

that might be stale, it still has to hash the entire tentative result to generate the

recipe. The two extreme hit-ratios of 100% and 0% give an indication of best-case

performance and the system overhead.

The MobileSales Benchmark

The unavailability of any widely used benchmark for evaluating mobile access to

databases led to the creation of MobileSales, a new benchmark based on the TPC-

App [155] benchmark from the Transaction Processing Performance Council. While

TPC-App is targeted towards an application server environment, I believe that a

modified version of this benchmark is also applicable to the mobile scenario.

93



Interaction Type Percentage

Create New Customer 1%

Change Payment Method 5%

Create Order 50%

Order Status 5%

View New Products 7%

View Product Detail 30%

Change Item 2%

Table 5.3: Default Mix of Client Interactions

The TPC-App benchmark consists of an online distributor that allows clients to

interact with a sales system. The workload consists of a set of interactions : clients

can add new customers, create new orders, change payment types, check on the status

of previous orders, view new products the distributor might have recently added, look

at detailed descriptions of products, and make changes to the product catalog.

Individual interactions can exhibit dependencies on each other. For example, the

‘Create Order’ interaction takes as input a customer’s unique identifier that could have

previously been created by a ‘Create New Customer’ interaction. Some interactions

can also be composed of multiple queries. For example, the ‘Create Order’ interac-

tion takes as input a customer’s ID, shipping information, the items and quantities

requested, and the payment information. The interaction will validate the customer’s

ID and then check if the shipping information already exists. If not, a new address

is entered into the database. It will then verify whether the customer qualifies for

discounts and if the order can be satisfied by the current inventory. Only then is the

order placed. However, interactions such as ‘View Product Detail’ only use a single

query to fetch the product descriptions for a number of items. More details on the

database schema, interaction types, test workload, query types, and dataset used in

MobileSales can be found in the benchmark specification [155].

Each client’s test run is defined by a time period that specifies the length of

benchmark execution and a mix that specifies the probability of each interaction type.

The default mix is shown in Table 5.3. There is no think time between interactions.

The benchmark dataset can be scaled with respect to the number of customers. The

dataset size is defined by (0.8× S + 2006) MB where S is the scale factor.
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While the focus of TPC-App is to test application server performance, I believe

that the model behind the benchmark’s interactions is representative of a number

of mobile use scenarios including traveling salesmen, insurance adjusters, and cus-

tomer relation management (CRM) applications. MobileSales therefore retains the

same workload (dataset, queries, and interaction types) but, unlike TPC-App, allows

mobile clients to directly access the database instead of being mediated through the

application server. This is not uncommon today and is recommended for enterprise

applications on mobile clients [168].

The performance of an individual mobile client is measured in terms of throughput

(total number of interactions) and latency (average interaction completion time).

MobileSales can also execute clients on separate load generator machines. Apart

from modeling concurrent database access, updates made by these load clients ensure

that the client replica diverges from the server as the benchmark progresses.

5.5.2 Experimental Procedure

For both benchmarks, the experimental setup shown in Figure 5.7 was used. Both

real and emulated networks were used to evaluate Cedar’s performance. For the

real Wireless WAN, a Novatel Wireless (Merlin S720) PCMCIA card was used to

connect the laptop directly to the database server over a Sprint EVDO (Rev. A)

network link. While the theoretical throughput for this network is 3,100 Kbit/s

down and 1,800 Kbit/s up, Sprint advertises 600–1400 Kbit/s down and 350–500

Kbit/s up. Iperf [147] and ping were used to measure the bandwidth and round trip

latency between the EVDO-enabled laptop and the database server. The network

was probed every 10 minutes over an approximately 13 hour period. The throughput

was averaged over a 20 second transfer and the round-trip latency over 25 pings.

The measurements, presented in Figure 5.8, showed an average download and upload

bandwidth of 535 and 94 Kbit/s and an average round-trip latency of 112 ms.

Based on these measurements and the theoretical throughput of other wireless

technologies shown in Table 5.1, Cedar was evaluated with emulated networks of

100 Kbit/s (representative of CDMA 1xRTT), 500 Kbit/s and 1 Mbit/s (represen-

tative of EVDO), and 2 Mbit/s (representative of WiMax). The round-trip time on

each emulated network was varied between 33, 66, and 100 ms. The emulated WAN

was implemented as a NetEm bridge [66]. As the evaluation’s focus was on the per-

95



Emulated
WAN

EVD
O

Figure 5.7: Experimental Setup

formance of the mobile client, there were no constraints on the network link between

the database and the background load generator used by the MobileSales benchmark.

For each benchmark, results from the two configurations listed below were mea-

sured:

• Native: This configuration corresponds to the mobile client directly accessing

the database server using its native JDBC driver. Native does not use Cedar’s

replica and avoids the overhead of using proxies.

• Cedar: This configuration corresponds to using a database replica present on

the mobile client. Comparing these results to the corresponding Native results

gives the performance benefit due to the Cedar system.

5.5.3 Experimental Configuration

In the experimental setup shown in Figure 5.7, the database server and the back-

ground load generator were 3.2 GHz Pentium 4s (with Hyper-Threading) with 4 and

2 GB of RAM respectively. The laptop was a Thinkpad T41p with a 1.7 GHz Pentium

M processor and 1 GB of RAM. The PDA-class machine (henceforth referred to as

the PDA) was a 1997-era Thinkpad 560X with a 233 MHz Pentium MMX processor

and 64 MB of RAM.

All the machines ran the Fedora Core 5 Linux distribution with the 2.6.18-1 SMP

kernel. Sun’s Java 1.5 was used as Cedar’s runtime environment. The database server
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The error bars for the latency measurements indicate the maximum and minimum
observed values. Four outliers (5X–30X of the mean) were removed from the ping
data.

Figure 5.8: EVDO Network Throughput and Latency

and the client replica used the open source MySQL database. The server proxy was

located on the same machine as the database server.

To detect and elide commonality between results, the approach described in Sec-

tion 5.4.1 was used. As content-addressable techniques have been shown to be better

than compression [91], the latter was not considered in the evaluation.

5.6 Performance Improvement: Microbenchmarks

As all results displayed identical trends, only a subset of the microbenchmark results

are presented here. For the microbenchmark that fetched approximately 0.5 MB of

data, Figure 5.9 presents the query completion time and the amount of data down-

loaded by the mobile client. The results show that Cedar’s performance is almost a

linear function of the amount of data found on the client replica. Cedar’s latency

overhead is visible only when the amount of stale data found is greater than 95%.

Irrespective of whether the laptop or PDA was used, the same trends were observed

for all the other microbenchmarks and network configurations.

In Figure 5.9 (b), note that even when Cedar finds no useful results on the client

replica (the 0% case), it still transfers slightly less data than the Native scenario that
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mean. There was no significant standard deviation for the query execution time.

Figure 5.9: 0.5 MB Microbenchmark: 1 Mbit/s and 100ms Network

uses MySQL. This occurs because MySQL and Cedar use different encodings over

the wire and Cedar’s encoding was slightly more efficient for the microbenchmark’s

dataset. This result also shows that even though Cedar uses Java objects for its

client-server communication, its wire protocol is as efficient as MySQL’s native JDBC

driver.

Apart from the networks described in Section 5.5.2, the microbenchmarks were

also executed over a Gigabit Ethernet link. While Cedar is not geared towards ex-

tremely fast networks, this allows an evaluation of Cedar’s adaptability in a high

bandwidth setting. As shown in Figure 5.10, Cedar, without adaptation, is almost a

factor of 10X slower than Native. The analysis showed that the extra software hops

through Cedar’s client and server proxy were the most significant cause for the this

slowdown. A smaller, but nevertheless noticeable, fraction of the overhead was the

computation cost of generating recipes. This can be seen in the slight increase in

latency as the amount of fresh data on the replica decreases.

As described in Section 5.3.3, whenever the client detects a fast network, it will

bypass the local proxy and switch to directly contacting the server-side proxy. This

adaptation gets Cedar’s overhead down to within 4.5X of the native performance.
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Figure 5.10: 0.5 MB Microbenchmark Query Latency: Gigabit

While still relatively high, the absolute difference is within 0.1 seconds of Native.

Tuning the unoptimized prototype should further improve Cedar’s performance.

5.7 Performance Improvement: MobileSales

5.7.1 Benchmark Setup

For the results below, from the MobileSales benchmark, the scale factor S defined in

Section 5.5.1 was set to 50. This generates a dataset large enough for simultaneous

access by 50 clients. While the raw data size is 2 GB, it occupies 6.1 GB on disk due

the addition of indexes and other MySQL metadata.

Each test run executed for five minutes using the default mix of client interactions

shown in Table 5.3. This mix has a greater percentage of update interactions than

reads. The high write ratio biases the results against Cedar as updates are not

optimized. A higher read ratio would only increase Cedar’s benefits.

During different benchmark runs, the number of load clients was set to either 0,

10, 30, or 50. As the results with 10 and 30 clients fall in between the 0 and 50 clients

cases, this section only presents the results for the unloaded server (0 load clients)

and 50 clients. The baseline for comparison is direct database access via MySQL’s

native JDBC driver. Relative to the baseline, improvement is defined as
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All results are the mean of three trials. The maximum standard deviation for through-
put and latency was 6% and 7% respectively of the corresponding mean.

Figure 5.11: Mobile Sales - Laptop with Full Hoard Profile

Improvement =
ResultCedar −ResultNative

ResultNative

The performance of the mobile clients was evaluated with two different hoard pro-

files. The first profile, named Full Hoard, selected the entire database for replication.

The second profile, named Partial Hoard, only selected half of the product catalog

(a predominantly read-only portion of the database) and did not include customer or

order information.

5.7.2 Laptop: Full Hoard Results

Figure 5.11 presents the results of the MobileSales benchmark with the Full hoard

profile. Figures 5.11 (a) and (b) first display the results from the unloaded server case
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All results are the mean of three trials. The maximum standard deviation for both
throughput and latency was 8% of the corresponding mean.

Figure 5.12: Mobile Sales - Laptop with Partial Hoard Profile

where the laptop is the only client accessing the database. The results show that the

throughput improvements due to Cedar range from 36% in the high bandwidth case

of 2 Mbit/s to as much as 374% in the low bandwidth case of 100 Kbit/s. The average

interaction latency shows similar improvements, ranging from a 26% reduction at 2

Mbit/s to a 79% reduction at 100 Kbit/s. The results from the emulated networks

match the real EVDO network where Cedar shows a 46% improvement in throughput

and a 30% reduction in the average interaction latency. As latency on the 1 Mbit/s

network increases, throughput drops for both Native and Cedar. This occurs because

neither system can fill the bandwidth-delay product.

Figures 5.11 (c) and (d) show that even when the number of load clients is in-

creased to 50, Cedar retains its performance advantage. Native’s performance shows

very little change when compared to an unloaded server. As the database is not the

bottleneck, the impact on both Native’s throughput and average interaction latency
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is less than 8%. Cedar, when compared to the unloaded server, does show a more

noticeable drop. As updates made by the load clients increase the divergence between

the client replica and the server, Cedar has to fetch more data over the low band-

width network. Compared to the unloaded server, Cedar experiences a 3% to 35%

drop in throughput and a 3% to 55% increase in latency. However, it still performs

significantly better than Native in all experimental configurations. The throughput

improvements range from 39% at 2 Mbit/s to 224% at 100 Kbit/s and latency reduc-

tions range from 28% at 2 Mbit/s to 70% at 100 Kbit/s.

5.7.3 Laptop: Partial Hoard Results

Figure 5.12 presents the results of the MobileSales benchmark with the Partial Hoard

profile. As the hoard profile has no impact on Native, its results are unchanged from

Section 5.7.2. While the performance gains due to Cedar drop when compared to

the Full hoard profile, they are still substantial. For an unloaded server, as seen in

Figures 5.12 (a) and (b), Cedar can deliver a throughput improvement ranging from

9% at EVDO to 91% at 100 Kbit/s and an average interaction latency reduction

ranging from 9% at EVDO to 48% at 100 Kbit/s. Even for the faster 1 and 2 Mbit/s

networks, Cedar’s throughput and latency improvements are in the range of 17–31%

and 14–24%.

Figures 5.12 (c) and (d) show that as Cedar’s throughput drops when compared to

an unloaded server, the improvement relative to Native now ranges from a throughput

increase of 15% at 1 Mbit/s with 33ms to 43% at 500 Kbit/s. The corresponding

reduction in average interaction latency ranges from 12% at 1 Mbit/s with 66ms

to 30% at 500 Kbit/s. The only exception is the EVDO network where Cedar’s

throughput is 14% lower than Native. This anomaly was attributed to temporary

network phenomena as these EVDO results exhibited the greatest variance in the

experiments.

5.7.4 PDA: Full Hoard Results

Figure 5.13 presents the results from running MobileSales on the PDA with the Full

hoard profile. It can be seen that, even with an extremely resource-limited client,

Cedar can still deliver a significant performance improvement. With the EVDO
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All results are the mean of three trials. The maximum standard deviation for through-
put and latency was 8% and 11% respectively of the corresponding mean.

Figure 5.13: Mobile Sales - PDA with Full Hoard Profile

network and an unloaded server, a 23% improvement in throughput and an 18%

reduction in latency can be seen. For the 100 Kbit/s network, the results show a

205% improvement in throughput and a 70% reduction in latency for an unloaded

server and a 116% improvement in throughput and a 54% reduction in latency with

50 load clients.

The gains from using Cedar tail off at the higher bandwidths with equivalent

performance in most cases. However, Cedar actually performed slightly worse than

Native on a 1 Mbit/s with 33ms network. Comparing it to Native’s throughput,

the results show a drop of 8% with an unloaded database server and a drop of 17%

with 50 load clients. A similar drop is seen with 50 load clients on a 1 Mbit/s with

66ms network. This performance drop arose because the 233 MHz CPU became a

bottleneck when large amounts of data needed to be hashed. This is exactly the
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All results are the mean of three trials. The maximum standard deviation for both
throughput and latency was 6% of the corresponding mean.

Figure 5.14: Mobile Sales - PDA with Half Hoard Profile

scenario where the adaptation technique proposed in Section 5.3.3 would be useful.

Tuning Cedar for PDAs should further decrease this overhead.

5.7.5 PDA: Partial Hoard Results

Switching the PDA from the Full hoard profile to the Partial hoard profile showed

the same behavior as above, and therefore, a detailed description of these results is

omitted. Overall, as seen in Figure 5.14, Cedar delivered equivalent or better perfor-

mance that Native in almost all of the network configurations. The only exceptions

were the two 1 Mbit/s network configurations highlighted in Section 5.7.4. In these

cases, relative to Native, Cedar’s worst case overheads for throughput and latency

were 11% and 12% respectively.
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5.7.6 Summary of MobileSales Results

The results from the MobileSales benchmark demonstrate that Cedar can significantly

improve performance in low-bandwidth conditions. These results are especially en-

couraging as they were achieved without any compromise in consistency and without

any modifications to the application or database. Also, as described in Section 5.7.1,

these results arise from a write-intensive workload that was biased against Cedar.

Cedar would perform even better for workloads with a greater percentage of reads.

Further, while Cedar is primarily targeted towards laptop-class clients, the results

indicate that even resource-limited PDA-class machines can benefit.

5.8 Combining Ganesh with Cedar

As seen in this chapter, Cedar and Ganesh, while adopting different approaches to

improving performance, are closely related. They both use content-addressable ap-

proaches to detecting similarity, use the same techniques to remain transparent to

both applications and databases, and don’t weaken any of the traditional transac-

tional or consistency properties provided by the underlying database.

For real deployments, one would envisage using both techniques together as they

are complementary. For example, Cedar’s replicas are currently only lazily updated

and the time period between updates can be large. The amount of useful data ob-

tained on the client therefore decreases with time as the contents of the replica start

diverging from the database server. This shortcoming can be easily addressed by

Ganesh’s approach of caching result rows. For the intervening period between replica

updates, data not found on the replica could be cached by Ganesh for future use.

Similarly, Ganesh can currently only improve performance for the queries it has seen

in the past. Even though the result might be present in its cache, the data could be

spread over multiple results from different queries and Ganesh would not be able to

combine them in response to a previously unseen query. Adding a database engine,

such as the replica used by Cedar, would help in dealing with this problem.

For a system that combines the principles used in Ganesh and Cedar, a careful

investigation of resource allocation will be needed. For example, how should the

memory and on-disk cache be divided between the two and should the partition be
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dynamic? Given the relatively inexpensive computational cost of the cryptographic

hashes used by Ganesh and the more expensive I/O incurred when using an on-disk

replica, how should these techniques be used together and what workloads would

benefit from them? While a detailed study of these and similar questions is needed, it

is my belief that a system that combined these two techniques would be demonstrably

better than the use of either system in isolation.

5.9 Summary

In summary, this chapter presents the design and implementation of Cedar, a system

that enables mobile database access with good performance while preserving con-

sistency. Cedar leverages a mobile client’s storage and computational resources to

compensate for weak connectivity. The evaluation results demonstrate that Cedar

has low overhead and can significantly improve performance for its intended usage

environment.
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Chapter 6

A Data Oriented Transfer Service

6.1 Introduction

The last few chapters have shown that content-addressable techniques can be a very

powerful tool to improve the performance of distributed systems deployed over WANs.

As can be seen in Table 6.1, these techniques are useful in a number of different scenar-

ios. They have been used to improve performance by exploiting external networked

data sources in CASPER, portable storage devices in Lookaside Caching, locality in

result streams in Ganesh, and stale data replicas in Cedar. Similarity has been found

at different levels of granularity (whole vs. partial objects), by using generic and

application-specific algorithms, and without requiring application modifications.

These content-addressable techniques have been used without modifying or weak-

ening any of the system or application semantics. These benefits arise from the fact

that content-based naming allows the easy separation of two very different functions.

The first is content negotiation, which is very application-specific and forms a part of

its control flow. The second function is data transfer, in which the actual data bits are

exchanged. Given the increasing prevalence of bulk data transfers over the Internet

(more than 70% of Internet traffic according to Azzouna and Guillemin [14]), this

separation of control versus data flow has become even more critical to performance.

However, the previously described systems in this thesis have assumed the exis-

tence of standardized APIs such as the file system interface or the JDBC database

interface in order to transparently interpose their optimizations. For applications and
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Lookaside
Property CASPER Caching Ganesh Cedar

Origin of External Data Portable Intra-Result Stale Database

Similarity Sources Storage Similarity Replicas

Granularity of Whole and Whole and

Similarity Partial File Whole File Partial Results Partial Results

Transparency File System

Method Proxy-based Interface Proxy-based Proxy-based

Original System

Modified? No Yes No No

Applications

Modified? No No No No

Table 6.1: Property Summary for CASPER, Lookaside Caching, Ganesh, and Cedar

systems that lack such standardized interfaces, the ability to transparently optimize

data transfers is significantly impacted. Even assuming the availability of source

code, adding each optimization to an application can take significant effort. Further,

even if different applications want to use the same optimization technique, there will

be duplication of work as the technique will need to be individually added to each

system. Any new techniques that might arise in the future will also be incompatible

with legacy applications.

Optimizing data transfers in these legacy applications is difficult for a number

of reasons. Even though the process of data transfer is generally independent of

the application, applications and protocols have traditionally almost always bundled

these functions together. The first reason for this is likely expediency: TCP and the

socket API provide a mechanism that is “good enough” for application developers

who wish to focus on the other, innovative parts of their programs. The second

reason is the challenge of naming. In order to transfer a data object, an application

must be able to name it. The different ways that applications define their namespaces

and map names to objects is one of the key differences between many protocols. For

example, FTP and HTTP both define object naming conventions, and may provide

different names for the same objects. While the use of content-based naming can help

in separating these two, the problems of adding different data transfer optimizations

to individual applications still remain.
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The technologies illustrated above include P2P systems [43, 44, 61, 101], Distributed
Hash Tables (DHTs) [112, 115, 120, 140], CAS-based systems [91, 114, 117, 149],
portable storage based file systems [96, 136, 150, 160], and optimizations based on
in-network storage [19, 58, 75].

Figure 6.1: Timeline for Data Transfer Technologies

In order to address this problem, and as a generalization of the work described

in Chapters 2 through 5, this chapter proposes the creation of a transfer service,

a new way of structuring programs that do bulk data transfer, by separating their

application-specific control logic from the generic function of data transfer. Applica-

tions still perform content negotiation using application-specific protocols, but they

use the transfer service to perform bulk point-to-point data transfers. The appli-

cations pass the data object that they want to send to the transfer service. The

transfer service is then responsible for ensuring that this object reaches the receiver.

The simplest transfer service might accomplish this by sending the data via a TCP

connection to the receiver. A more realistic transfer service could implement the data

transfer techniques outlined in Table 6.1, making them available to SMTP, HTTP,

and other applications.

Separating data transfer from the application provides several benefits. The first

benefit is for application developers, who can re-use available transfer techniques

instead of re-implementing them. The second benefit is for the inventors of innovative

transfer techniques. As can be seen in Figure 6.1, first shown in Chapter 1, there

have been a number of efforts that have examined ways to improve the efficiency and

speed of bulk transfers. However, these innovations must be reimplemented for each

application. Not surprisingly, the rate of adoption of innovative transfer mechanisms,

particularly in existing systems, is slow. Applications that use the transfer service can
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immediately begin using the new transfer techniques without modification. Innovative

ideas do not need to be hacked into existing protocols using application-specific tricks.

Third, because the transfer service sees the whole data object that the application

wants to transfer, it can also apply techniques such as coding, multi-pass compression,

and caching, that are beyond the reach of the underlying transport layers. The

transfer service itself is not bound to using particular transports, or even established

transports – it could just as well attempt to transfer the data using a different network

connection or a portable storage device.

Moving data transfer into a new service requires addressing three challenges. First,

for both legacy and new applications, the service must provide a convenient and stan-

dard API for data transfer applications. However, as shown in Section 6.4, this does

not preclude the creation of transparent proxy-based solutions when standardized pro-

tocols exist. Second, the architecture should allow easy development and deployment

of new transfer mechanisms. Finally, the service must be able to support applications

with diverse negotiation and naming conventions.

The following sections present the design and implementation of a Data-Oriented

Transfer service, or DOT, shown in Figure 6.2. The design of DOT centers around

a clean application interface to a modular, plugin based architecture that facilitates

the adoption of new transfer mechanisms. DOT uses content-addressable techniques

to name objects based upon their cryptographic hash, providing a uniform naming

scheme across all applications.

This chapter begins in Section 6.2 with examples of how a transfer service can

be used. Next, in Section 6.3, it describes an effective design for such a transfer
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service, its API and extension architecture, and its core transfer protocols. Section 6.4

demonstrates how the transfer service’s API was used to create an application-specific

proxy for the SMTP protocol used by email clients. Section 6.5 then evaluates the

implementation of DOT with a number of micro- and macro-benchmarks, finding

that it is easy to integrate with applications, and that by using DOT, applications

can achieve significant bandwidth savings and easily take advantage of new network

capabilities. The chapter finally concludes with a discussion on issues facing a transfer

service deployment in Section 6.6, the relationship of DOT to the other systems

described in this dissertation in Section 6.7, and a brief summary of the chapter’s

findings in Section 6.8.

6.2 Transfer Service Scenarios

The advantage of a generic interface for data transfer is that it enables new transfer

techniques across several applications. While several transfer techniques have been

implemented within the DOT prototype, it can be argued that its true power lies in its

ability to accommodate a diverse set of scenarios beyond those in the initial prototype.

This section examines several scenarios that a transfer service would enable, and it

concludes with an examination of situations for which the transfer service might be

inappropriate.

• A first benefit the transfer service could provide is cross-application caching. A

DOT-based cache could benefit a user who receives the same (or similar) file

through an Instant Messaging application as well as via an email attachment.

The benefits increase with multi-user sharing. An organization could maintain

a single cache that handled all inbound data, regardless of which application or

protocol requested it.

• Content delivery networks such as Akamai [3] could extend their reach beyond

just the Web. A “data delivery network” could accelerate the delivery of Web,

Email, NNTP, and any other data-intensive protocol, without customizing the

service for each application. DOT could provide transparent access to Internet

Backplane Protocol storage depots [19], to storage infrastructures such as Open

DHT [115], or to a collection of BitTorrent peers.
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• The transfer service is not bound to a particular network, layer, or technology.

It can use multi-path transfers to increase its performance. If future networks

provide the capability to set up dedicated optically switched paths between

hosts, the transfer service could use this facility to speed large transfers. The

transfer need not even use the network: it could use portable storage to transfer

data [56, 160].

• Finally, the benefits of the transfer service are not limited to simply exchanging

bits. DOT creates the opportunity for making cross-application data processors

that can interpose on all data transfers to and from a particular host. These

proxies could provide services such as virus scanning or compression. Data

processors combined with a delegation mechanism such as DOA [159] could

also provide an architecturally clean way to perform many of the functions

provided by today’s network middleboxes.

The transfer service might be inappropriate for real-time communication such

as telnet or teleconferencing. DOT’s batch-based architecture would impose high

latency upon such applications. Nor is the transfer service ideal for applications

whose communication is primarily “control” data, such as instant messaging with

small messages. The overhead of the transfer service may wipe out any benefits it

would provide.

With these examples of the benefits that a transfer service can and cannot provide

in mind, the next section examines a more concrete example of a DOT configuration.
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6.2.1 Example DOT Configuration

Figure 6.3 shows an example DOT configuration supported by the current proto-

type that allows data transfers to proceed using multiple Internet connections and

a portable storage device. The Generic Transfer Client (GTC) shown in the figure

provides the core of the transfer service functionality. This configuration provides

three properties:

Surviving transient disconnection and mobility: Coping with disconnection

requires that a transfer persist despite the loss of a transport-layer connection. In the

example configuration, the multi-path plugin uses both the wireless and DSL links

simultaneously to provide redundancy and load balancing. Mobility compounds the

problem of disconnection because the IP addresses of the two endpoints can change.

DOT’s data-centric, content-based naming offers a solution to this problem because

it is not tied to transport-layer identifiers such as IP addresses.

Transferring via portable storage: Portable storage offers a very high-latency,

high-bandwidth transfer path [56, 160]. DOT’s modular architecture provides an easy

way to make use of such unconventional resources. A portable storage plugin might,

for example, copy some or all of the object onto an attached disk. When the disk is

plugged into the receiver’s machine, the corresponding transfer plugin can pull any

remaining data chunks from the disk. An advanced implementation might also make

these chunks available to other machines in the network.

Using caching and multiple sources: The receiver can cache chunks from

prior transfers, making them available to subsequent requests. The configuration

above also shows how the transfer service can fetch data from multiple sources. Here,

the multi-path plugin requests chunks in parallel from both the portable storage

plugin and a set of network transfer plugins. The transfer plugins pull data from two

different network sources (the sender and a mirror site) over two network interfaces

(wireless and DSL).

6.3 Design and Architecture

This section first presents an overview of the DOT system architecture in Section 6.3.1.

It then examines the manner in which applications use the transfer service in Sec-
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tions 6.3.2 and 6.3.3. Next, it describes how transfer plugins and the default transfer

protocol operates in Section 6.3.4 and the way that the transfer service accesses stor-

age resources in Section 6.3.5. Finally, Section 6.3.6 examines the way that the plugins

can be chained together to extend the system.

6.3.1 Architectural Overview

Applications interact with the transfer service as shown in Figure 6.2. Applications

still manage their control channel, which handles content negotiation, but they offload

bulk transfers to the transfer service. The transfer service delivers the data to the

receiver using lower layer system and network resources, such as TCP or portable

storage.

DOT is a receiver-pull, point-to-point service. The receiver-pull model was chosen

to ensure that DOT only begins transferring data after both the sending and receiving

applications are ready. Receivers also have a better knowledge of available resources

that the sender might be unaware of. For example, the receiver might detect similarity

between the object to be transferred and a file on its local storage system. DOT

focuses on point-to-point service for two reasons: First, such applications represent the

most important applications on the Internet (e.g., HTTP, email, etc.). Second, point-

to-multipoint applications that focus on bulk data transfer can be easily supported

by DOT’s plug-in model (e.g., transparent support for BitTorrent or CDNs) [106].

As DOT is based on a receiver-pull model, hints are used by the sender to in-

form the receiver’s Generic Transfer Client (GTC) of possible data locations. Hints,

associated with the object being transferred, are generic location specifiers. A hint

has three fields: method, priority, and weight. The method is a URI-like string

that identifies a DOT plugin and then provides plugin-specific data. Some examples

might be gtc://sender.example.com:9999/ or dht://OpenDHT/. As with DNS SRV

records [64], the priority field specifies the order in which to try different sources; the

weight specifies the probability with which a receiver chooses different sources with

the same priority. By convention, the sender’s GTC will include at least one hint

– itself – because the sender’s GTC is guaranteed to have the data. However, the

receiver is free to ignore hints or combine them with other data sources if it desires.

DOT is implemented in C++ using the libasync [84] library. Libasync provides
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a convenient callback-based model for creating event-driven services. DOT makes

extensive use of libasync’s RPC library, libarpc, for handling communication both on

the local machine and over the network. For instance, the default protocol used to

communicate between different transfer service daemons is implemented using RPC.

Figure 6.4 shows the basic components involved in a DOT-enabled data transfer:

the sender, receiver, and the DOT transfer service. The core of the transfer service

is provided by the DOT GTC. The GTC uses a set of plugins to access the network

and local machine resources:

• Transfer plugins accomplish the data transfer between hosts. Transfer plug-

ins include the default GTC-to-GTC transfer plugin and the portable storage

transfer plugin.

• Storage plugins provide the GTC with access to local data, divide data into

chunks, and compute the content hash of the data. Storage plugins include the

disk-backed memory cache plugin used in the implementation, or a plugin that

accesses locally indexed data on the disk.

Sending data using DOT involves communication among the sending and receiving

application, and the GTC. Figure 6.4 enumerates the steps in this communication:

(1) The receiver initiates the data transfer, sending an application-level request to

the sender for object X. Note that the sender could also have initiated the transfer.

(2) The sender contacts its local GTC and gives the GTC object X using the put

operation.
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(3) When the put is complete, the GTC returns a unique object identifier (OID)

for X to the sender as well as a set of hints. These hints help the receiver know where

it can obtain the data object. The OID and hints are treated as an opaque object by

both the sending and receiving application.

(4) The sender passes the OID and the hints to the receiver over the application

control channel.

(5) The receiver uses the get operation to instruct its GTC to fetch the object

corresponding to the given OID.

(6) The receiver’s GTC fetches the object using its transfer plugins, described in

Section 6.3.4, and then

(7) returns the requested data to the receiver.

(8) After the transfer is complete, the receiver continues with its application pro-

tocol.

DOT names objects by OID; an OID contains a cryptographic hash of the object’s

data plus protocol information that identifies the version of DOT being used. The

hash values in DOT include both the name of the hash algorithm and the hash value

itself.

6.3.2 Transfer Service API for New and Legacy Applications

The application-to-GTC communication, shown in Table 6.2, is structured as an RPC-

based interface that implements the put and get family of functions for senders and

receivers respectively. A key design issue for this API is that it must support existing

data-transfer applications while simultaneously enabling a new generation of appli-

cations designed from the ground-up to use a transfer service. The experience from

implementing different systems based on content-addressable techniques, as shown in

Table 6.1, has revealed several key design elements that are reflected in DOT’s API:

Minimal changes to control logic: Using the data transfer service should

impose minimal changes to the control logic in existing applications. Similar to the

modifications needed for lookaside caching, the application protocol with DOT’s API

only needs to be modified to send the OID and hints instead of the actual data from

the sender to the receiver. As shown later in Section 6.4, other minor changes might
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Return Type / Command Description

PUT Commands

t id put init() Initiates an object “put”. Returns a transaction identifier.

void put data(t id, data) Adds object data to the GTC

(OID,Hints) put commit(t id) Marks the end of object data transfer. Returns an opaque
structure consisting of the OID and Hints

(OID,Hints) put fd(fd) Optimized put operation that uses an open file descriptor

void done(OID) Allows the GTC to release resources associated with OID.

GET Commands

t id get init(OID, mode, Initiates an object fetch. Returns a transaction identifier.
hints) Mode can be Sequential or Out-of-Order.

int get(t id, buf, &offset, Read data from the GTC. Returning zero indicates EOF.
&size)

All function names are preceded by GTC in the actual implementation

Table 6.2: The Application-to-GTC API

also be required in the application’s handshake protocol if backward compatibility

with non-DOT enabled systems is required. Apart from the above RPC-based API,

a stub library, described in Section 6.3.3 was also created for easier integration with

legacy applications.

Permit optimization: The second challenge is to ensure that the API does

not impose an impossible performance barrier. In particular, the API should not

mandate extra data copies, and should allow an optimized GTC implementation to

avoid unnecessarily hashing data to compute OIDs. Some applications also use special

OS features (e.g., the zero-copy sendfile system call) to get high performance; the

API should allow the use of such services or provide equivalent alternatives. To

address such performance concerns, the GTC provides a file-descriptor passing API

that sends data to the GTC via RPC. Caching of OIDs, similar to systems such as

EMC’s Centera [55], is another possible optimization. DOT gives high-performance

applications the choice to receive data out-of-order to reduce buffering and delays.

DOT’s API can also be used in a synchronous or asynchronous manner.
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Data and application fate sharing: The third design issue is how long the

sender’s GTC must retain access to the data object or a copy of it. The GTC will

retain the data provided by the application at least until either: (a) the application

calls GTC done(); or (b) the application disconnects its RPC connection from the GTC

(e.g., the application has exited or crashed). Currently, there is no limit to how long

the GTC may cache data provided by the application. The current implementation

retains this data in cache until it is evicted by newer data. Adding support for

one-time transfers and secure deletes from DOT’s cache is a part of future work.

6.3.3 Transfer Service API for Legacy Applications

While the API described in Section 6.3.2 is both small and relatively easy to use,

most applications are not written to send data using RPC calls to a local transfer

service. Requiring the use of an RPC library might be a more intrusive change to the

application than desired. Therefore, to make it easy to port existing applications to

use DOT, a socket-like stub library was created that preserves the control semantics

of most applications. This interface requires the GTC to place data in-order before

sending it to the application. The library provides five functions:

dot_init_get_data(oid+hints)

dot_init_put_data()

dot_read_fn(fd, *buf, timeout)

dot_write_fn(fd, *buf, timeout)

dot_fds(*read, *write, *time)

get and put return a forged “file descriptor” that is used by the read and write

functions. The read and write functions provide a blocking read and write interface.

The fds function allows select-based applications to query the library to determine

which real file descriptors the application should wait for, and for how long. Sec-

tion 6.4 shows how this support for legacy applications made it easy to integrate

DOT with a production mail server package. Note that with some more engineering

effort, the stub library could be converted to export a pure socket interface with the

addition of special functions to mark object boundaries.
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6.3.4 DOT Transfer Plugins

The GTC transfers data through one or more transfer plugins. These plugins have

a simple, standard interface that can implement diverse new transfer techniques.

Internally, the GTC splits objects into a series of chunks. Each chunk is named with

a descriptor, which contains a hash of the chunk, its length, and its offset into the

object. Like CASPER, the list of descriptors that correspond to the OID is also

known as a recipe. Figure 6.5 shows the relationship between objects, OIDs, chunks,

and descriptors. The transfer plugin API has three functions:

get_descriptors(oid, hints[], cb)

get_chunks(descs[], hints[], cb)

cancel_chunks(descriptors[])

A transfer plugin must support the first two functions. Given a set of OID and

hints, the first function is used to fetch the descriptor list, or recipe, that corresponds

to the OID received over the application’s control channel. After inspecting the

recipe, the GTC will use the second function to only fetch the data corresponding to

descriptors that cannot be found locally. The cb parameter in these two functions

is an asynchronous callback function to which the plugin should pass the returned

descriptors or chunks. The third function is used to cancel an in-progress transfer if

the data was fetched via some other transfer plugin. Some plugins may not be able to

cancel an in-progress request once it has gone over the network, and so may discard

cancel requests if necessary.

To receive data, the GTC calls into a single transfer plugin with a list of the

required chunks. That plugin can transfer data itself or it can invoke other plugins.

Complex policies and structures, such as parallel or multi-path transfers, can be
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achieved by a cascade of transfer plugins that build upon each other. For example,

the current DOT prototype provides a multi-path plugin which, when instantiated,

takes a list of other transfer plugins to which it delegates chunk requests.

Default GTC-to-GTC Transfer Plugin

Every GTC implementation must include a default GTC-to-GTC plugin that is avail-

able on all hosts. This plugin transfers data between two GTCs via a separate TCP

connection, using an RPC-based protocol. The receiver’s GTC requests a recipe

from the sender’s GTC that correspond to the desired OID. Once it starts receiving

descriptors, the receiver’s GTC can begin sending pipelined requests over the same

plugins to transfer the individual chunks.

Portable Storage Transfer Plugin

On the sender side, the portable storage plugin registers to receive notifications about

new OIDs generated by the GTC. When a new OID is discovered, the plugin copies

the blocks onto the storage device. The implementation is näıve, but effective: Each

chunk is stored as a separate file named by its hash, and there is no index.

On the receiver, the portable storage plugin acts as a transfer plugin accessed by

the multi-path plugin that receives a request for all descriptors. Polling the device,

while less efficient than receiving notification from the OS, was selected for detecting

updates as it is more portable. Adding support for OS-specific mechanisms like

inotify [81] would be an easy change. The plugin currently polls the portable

storage device every 5 seconds to determine if new data is available. If the device

has changed, the plugin scans the list of descriptors stored on the flash device and

compares them to its list of requested descriptors, returning any that are available.

Multi-path Transfer Plugin

The DOT multi-path plugin acts as a load balancer between multiple transfer plugins,

some of which could be bound to different network interfaces on a multi-homed ma-

chine. The plugin is configured with a list of transfer plugins to which it should send

requests. The sub-plugins can be configured in one of two ways. Some plugins can
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receive requests in small batches, e.g., network plugins that synchronously request

data from a remote machine. Other plugins instead receive a request for all chunks

at once, and will return them opportunistically. The latter mode is useful for plugins

such as the portable storage plugin that opportunistically discovers available chunks.

The multi-path plugin balances load among its sub-plugins in three ways. First,

it parcels requests to sub-plugins so that each always has ten requests outstanding.

Second, to deal with slow or failed links, it supports request borrowing where already-

issued requests are shifted from the sub-plugin with the longest queue to one with an

empty queue. Third, it cancels chunk requests as they are satisfied by other sources.

6.3.5 Storage Plugins

The main purpose of the GTC is to transfer data, but the GTC must sometimes store

data locally. The sender’s GTC must hold onto data from the application until the

receiver is able to retrieve it. The receiver’s GTC, upon retrieving data might need to

reassemble out-of-order chunks before handing the data to the receiver, or may wish

to cache the data to speed subsequent transfers.

The GTC supports multiple storage plugins, to provide users and developers with

flexible storage options. Examples of potential back-ends to the storage plugins in-

clude in-memory data structures, disk files, or a SQL database. The current DOT

prototype contains a single storage plugin that uses in-memory hash tables backed

by disk. The storage plugin is asynchronous, calling back to the GTC once it stores

the data. All DOT storage plugins provide a uniform interface to the GTC. To add

data to the storage plugin, the GTC uses an API that mirrors the application PUT

API in Table 6.2.

In addition to whole object insertion, the storage plugins export an API for single

chunk storage. This API allows the GTC or other plugins to directly cache or buffer

chunk data. The lookup functions are nearly identical to those supported by the

transfer plugins, except that they do not take a hints parameter:

put_chunk(descriptor, data)

release_chunk(descriptor)

get_descriptors(oid, cb)

get_chunks(descriptors[], cb)
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Chunking

The storage plugin also divides input data into chunks. To do so, it calls into a

“chunker” library. The chunker is instantiated for each data object sent to the stor-

age plugin. It provides a single method, chunk data, that receives a read-only pointer

to additional data. It returns a vector of offsets within that data where the storage

plugin should insert a chunk boundary. The current implementation supports two

chunkers, one that divides data into fixed-length segments, and one that uses Rabin

fingerprinting [83, 108] to select data-dependent chunk boundaries. Rabin fingerprint-

ing involves computing a function over a fixed-size sliding window of data. When the

value of the function is zero, the algorithm signals a boundary. The result is that

the boundaries are determined by the value of the data; they are usually the same

despite small insertions or deletions of data.

6.3.6 Configuring Plugins

DOT transfer plugins are configured as a data pipeline, passing get descriptors

and get chunks requests on to subsequent transfer plugins. Two example plugin

configurations along with their instantiation code are shown in Figure 6.6. The first

consists of the GTC, a local storage plugin, and a default GTC-to-GTC transfer

plugin. The second adds a multi-path plugin and portable storage plugin to the

configuration.

Plugins that can push data, such as the portable storage plugin, need to be notified

when new data becomes available. These plugins register with the GTC to receive

notice when a new data object is inserted into the GTC for transfer, by calling the

register push function.

6.4 Application Integration Case Study: Postfix

To evaluate the ease with which DOT integrates with existing, real networked systems,

the Postfix mail program [158] was modified to use DOT, when possible, to send email

messages between servers. Postfix is a popular, full-featured mail server that is in

wide use on the Internet, and represented a realistic integration challenge for DOT.
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gtc = new gtcdMain(); gtc = new gtcdMain();

sp = new storagePlugin(gtc); sp = new storagePlugin(gtc);

xp = new xferPlugin(gtc); xp = new xferPlugin(gtc);

psp = new portablePlugin(gtc);

mp = new multiPathPlugin(gtc);

gtc->set storagePlugin(sp); gtc->set storagePlugin(sp);

mp->set xferPlugin(psp)

mp->set xferPlugin(xp)

gtc->set xferPlugin(xp); gtc->set xferPlugin(mp);

Figure 6.6: Example Plugin Configurations

Examining the benefits of running DOT on a mail server was chosen for a number

of reasons. First, mail is a borderline case for a mechanism designed to facilitate large

data transfers. Unlike peer-to-peer or FTP downloads, most mail messages are small.

Mail provides an extremely practical scenario: the servers are complex, the protocol

has been around for years and was not designed with DOT in mind, and any benefits

DOT provides would be beneficial to a wide array of users.

Postfix is a modular email server, with mail sending and receiving decomposed

into a number of separate programs with relatively narrow functions. Outbound mail

transmission is handled by the smtp client program, and mail receiving is handled

by the smtpd server program. Postfix uses a “process per connection” architecture

in which the receiving demon forks a new process to handle each inbound email

message. These processes use a series of blocking calls, with timeouts, to perform
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(a) Normal SMTP (b) DOT-enabled SMTP

Figure 6.7: SMTP Protocol Modifications

network operations. Error handling is controlled via a setjmp/longjmp exception

mechanism.

As the modified Postfix server can also act as a proxy, it is also useful for an

incremental deployment of DOT. In most settings today, individual clients commu-

nicate with a local mail server to send email. In turn, this local server communicates

with the corresponding server on the recipient’s end that is responsible for receiving

email. Finally, the recipient’s server will deliver that mail to the recipient’s client.

In such scenarios, even if the individual clients are not DOT-enabled, the benefits

from DOT’s optimized transfer techniques can be realized for the WAN-based data

transfers between the two email servers. Further, assuming that data transfers over

the WAN are more expensive than in a local setting, the WAN transfers are exactly

what would benefit the most from DOT.

DOT was integrated into this architecture as an SMTP protocol extension. All

DOT-enabled SMTP servers, in addition to the other supported features, reply to the

EHLO greeting from the client with a “X-DOT-DATA” response. Any SMTP client

compliant with the RFC [74] can safely ignore unrecognized SMTP options beginning

with “X”. This allows non-DOT enable clients to use the standard method of data

transfer and allows the server to be backward compatible.

As shown in Figure 6.7, on the presentation of X-DOT by the server, any DOT-
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Program Original LoC New LoC %

GTC Library - 421 -

Postfix 70,824 184 0.3%

smtpd 6,413 107 1.7%

smtp 3,378 71 2.1%

Table 6.3: Lines of Code Added or Modified in Postfix

enabled client can use the X-DOT-DATA command as a replacement for the “DATA”

command. Clients, instead of sending the data directly to the server, only send the

OID and hints to the server as the body of the X-DOT-DATA command. Upon receipt

of these, the server opens a connection to its local GTC and requests the specified

data object. The server sends a positive completion reply only after successfully

fetching the object. In the event of a GTC error, the server assumes that the error is

temporary and a transient negative completion reply is sent to the client. This will

make sure that the client either retries the DOT transfer or, after a certain number

of retries, falls back to normal DATA transmission. Also note that even though the

actual bulk data transfer within DOT is receiver driven, this design choice does not

place any restrictions on the application’s control protool. As shown in Figure 6.7,

this allows the SMTP protocol to remain sender driven.

6.4.1 Integration Effort

Without having any knowledge of Postfix, integrating DOT took me less than a week.

This time includes the time required to create the adapter library for C applications

that do not use libasync, discussed in Section 6.3.3. Table 6.3 presents the number

of lines of code (LoC) needed to enable DOT within Postfix. The modifications

touched two Postfix subsystems, the smtpd mail server program, and the smtp mail

client program. While only two applications have thus far been used with DOT

(Postfix and gcp, described below), the ease with which DOT integrated with each

is encouraging.
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Figure 6.8: Experimental Setup for Microbenchmarks

6.5 Performance Improvement

The primary goal of the DOT architecture is to facilitate innovation without imped-

ing performance. This section first examines a number of microbenchmarks of basic

DOT transfers to understand if there are bottlenecks in the current system, and to

understand whether they are intrinsic or could be circumvented with further opti-

mization. It then examines the performance of plugins that use portable storage and

multiple network paths to examine the benefits that can arise from using a more flex-

ible framework for data transfer. This section concludes by examining the integration

of DOT into Postfix.

6.5.1 Microbenchmarks

To demonstrate DOT’s effectiveness in transferring bulk data, a simple file trans-

fer application, gcp, was created. gcp is similar to the secure copy (scp) program

provided with the SSH suite. gcp, like scp, uses ssh to establish a remote authenti-

cated connection and negotiate the control part of the transfer such as destination file

path, file properties, etc. However, as the bulk data transfer occurs via GTC-to-GTC

communication, the actual data is not encrypted during the transfer.

Figure 6.8 shows the experiment setup for these experiments. All experiments were

performed on a Gigabit Ethernet network at Emulab [162] with a dummynet [118]

middlebox controlling network bandwidth and latency. The machines were Emulab’s

“pc3000” nodes with 3 GHz 64-bit Intel Xeon processors and 2 GB of DRAM.

This program was used to transfer files of sizes ranging from 4 KB to 40 MB

under varying network conditions. These results, shown in Figure 6.9, compare the

performance of gcp to wget, a popular utility for HTTP downloads, scp, and a

modified version of scp that, like gcp, does not have the overhead of encryption for
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Figure 6.9: gcp vs. Other Standard File Transfer Tools
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the bulk data transfer. All tools used the system’s default values for TCP’s send and

receive buffer size. gcp uses the fixed-size chunker for these experiments. DOT was

started with a cold cache for all experiments and there was no intra-file similarity

that DOT could extract commonality from. All displayed results are the mean of

10 trials and displayed no noticeable standard deviation. This section concentrates

on the results from the 40 MB file transfer as it is easier to observe the potential

overheads of DOT.

As shown in Figure 6.9 (e), for WAN conditions, gcp exhibits very little or no

overhead when compared to the other file transfer tools and its performance is equiv-

alent to scp both with and without encryption. On the local Gigabit network, gcp

begins to show overhead. In this case, wget is the fastest. Unlike both scp and gcp,

the Apache HTTP server is always running and wget does not pay the overhead of

spawning a remote process to accept the data transfer. gcp is only slightly slower

than scp. This overhead arises primarily because the GTC on the sender side must

hash the data twice: once to compute the OID for the entire object and once for the

descriptors that describe parts of the object. The hashing has two effects. First, the

computation of the whole data hash must occur before any data can be sent to the

receiver, stalling the network temporarily. Second, the hashes are relatively expensive

to compute.

This overhead can be reduced, and the network stall eliminated, by caching OIDs

(as noted earlier, some systems such as EMC’s Centera [55] already provide this ca-

pability). While the computational overhead of computing the chunk hashes remains,

it can be overlapped with communication. The computational overhead could also

be reduced by generating a cheaper version of the OID, perhaps by hashing the de-

scriptors for the object. However, the latter approach sacrifices the uniqueness of the

OID and removes its usefulness as an end-to-end data validity check.

6.5.2 Multi-Path Plugin

The multi-path plugin, described in Section 6.3.4, load balances between multiple

GTC-to-GTC transfer plugins. Its performance was evaluated using the same Emulab

nodes as above. The receiver, as shown in Figure 6.10, is configured with two network

interfaces, and the sender with a 1 Gbit/s link to the dummynet middlebox that

controls network bandwidth and latency.
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The capacities of Links 1 and 2 are varied.

Figure 6.10: Experimental Setup for the Multi-Path Plugin Benchmark

The performance of the multi-path plugin was examined while transferring 40 MB,

4 MB, and 400 KB files via gcp. DOT was started with a cold cache for all experiments

and there was no intra-file similarity from which DOT could extract commonality.

As the same trends were shown in all of the results, only the 40 MB results are pre-

sented here, note that the performance on 400 KB files was somewhat lower because

they were not sufficiently large to allow TCP to consume the available capacity. All

transfers were conducted using FreeBSD 5.4 with the TCP socket buffers increased

to 128 KB and the initial slow-start flight size set to 4 packets.

Table 6.4 presents several combinations of link bandwidths and latencies, showing

that the multi-path plugin can substantially decrease transfer time. For example,

when load balancing between two directly connected 100 Mbit/s Ethernet links, the

multi-path plugin reduced the transfer time from 3.59 seconds on a single link to 1.90

seconds. The best possible time to transfer a 40 MB file over 100 Mbit/s Ethernet

is 3.36 seconds, so this represents a substantial improvement over what a single link

could accomplish. Note that the multi-path plugin was created and deployed with no

modifications to gcp or the higher layer DOT functions.

In high bandwidth×delay networks, such as the 100 Mbit/s link with 66 ms latency

(representing a high-speed cross-country link), TCP does not saturate the link with a

relatively small 40 MB transfer. In this case, the benefits provided by the multi-path

plugin are similar to those achieved by multiple stream support in GridFTP and other

programs. Hence, using the multi-path plugin to bond a 100 Mbit/s and 10 Mbit/s

link produces greater improvements than one might otherwise expect.

Finally, in cases with saturated links with high asymmetry between the link capac-

ities (the second to last line in the table, a 10 Mbit/s link combined with a 0.1 Mbit/s

link), the multi-path plugin provides some benefits by adding a second TCP stream,
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Link 1 Link 2 single multipath savings

100/0 3.59 1.90 47.08%
100/0 10/0 3.59 3.54 1.39%

100/33 21.46 11.15 48.04%

100/33 10/33 21.46 13.58 36.72%

1/33 21.46 20.44 4.75%

100/66 43.33 23.20 46.46%

100/66 10/66 43.33 22.97 46.99%

1/66 43.33 38.25 11.72%

10/66 48.39 23.42 51.60%

10/66 1/66 48.39 39.20 18.99%

0.1/66 48.39 44.14 8.78%

1/66 0.1/66 367.39 313.42 14.69%

Links indicate bandwidth in Mbit/s and latency in milliseconds. The single column
shows the time for a gcp transfer using only the fastest link of the pair.

Table 6.4: Multi-Path Performance

reducing the transfer time by roughly 9%. To understand the impact of request bor-

rowing, the same experiment was re-ru after disabling it. Without request borrowing,

the multi-path plugin slowed the transfer down by almost a factor of three, requiring

128 seconds to complete a transfer that the single link gcp completed in 48 seconds.

Without request borrowing, the queue for the fast link empties, and the transfer is

blocked at the speed of the slowest link until its outstanding requests complete.

6.5.3 Portable Storage Plugin

DOT’s use of portable storage was evaluated using a workload drawn from Internet

Suspend/Resume (ISR) [123]. ISR is a thick-client mechanism that allows a user

to suspend work on one machine, travel to another location, and resume work on

another machine there. The user-visible state at resume is exactly what it was at

suspend. ISR is implemented by layering a virtual machine (VM) on a distributed

storage system.

A key ISR challenge is in dealing with the large VM state, typically many tens of
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Figure 6.11: Experimental Setup for the Portable Storage Plugin Benchmark
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Figure 6.12: Portable Storage Performance

GB. When a user suspends an ISR machine, the size of new data generated during

the session is in the order of hundreds of MBs. This includes both the changes made

to the virtual disk as well as the serialized copy of the virtual memory image. Given

the prevalence of asymmetric links in residential areas, the time taken to transfer

this data to the server that holds VM state can be substantial. However, if a user is

willing to carry a portable storage device, part of the VM state can be copied to the

device at suspend time.

To evaluate the benefit of DOT in such scenarios, a fast residential cable Internet

link with a maximum download and upload speed of 4 Mbit/s and 2 Mbit/s respec-

tively was emulated. Figure 6.11 shows the experiment setup for this experiment.
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All experiments were performed on a Gigabit Ethernet network with a NetEm [66]

middlebox controlling network bandwidth and latency. All machines had 3.2 GHz

Intel Pentium 4 CPUs with 2 GB of SDRAM and ran the 2.6.10-1.770-SMP Linux

kernel.

An analysis of data collected from the ISR test deployment on Carnegie Mellon’s

campus [94] revealed that the average size of the data transferred to the server after

compression is 255 MB. To model this scenario, DOT was used to transfer a single

255 MB file representing the combined checkin state. DOT was started with a cold

cache for all experiments and there was no intra-file similarity that DOT could ex-

tract commonality from. A USB flash device was inserted into the target machine

approximately five minutes after the transfer was initiated. The test used two USB

devices, a “fast” device (approx. 20 MB/sec. read times) and a “slow” device (approx.

8 MB/sec).

The speed of the transfer and total time for competition is presented in Fig-

ure 6.12. While the experiment was run five times for each device, there was no

noticeable difference between runs. Immediately after the portable storage was in-

serted and detected at the end of the portable storage plugin’s poll interval, the

system experienced a small reduction in throughput as the event-driven DOT proto-

type blocked as it scanned the USB device for data. This slowdown could be avoided

by spawning a helper process to perform the disk I/O but was small enough to be

negligible. As it started reading the data from the device, the transfer rate increased

substantially. The reason for the sharp spike in the amount of data transferred was

that the portable storage plugin read the data from the portable device in random

order but the gcp application needed it in sequential order. Thus, data was cached

in the storage plugin by the GTC for in-order delivery. However, once all the data

was read and cached, the transfer completed almost instantly.

6.5.4 Postfix SMTP Server

In order to quantify the benefits from using a DOT-enabled email server, an analysis

of email workloads was required. A medium-volume research group mail server was

therefore modified to trace all messages received by it. The analysis of the gath-

ered trace served two purposes. First, it examined the benefits of DOT’s content-

hash-based chunked encoding and caching. While chunked encoding is well known to
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benefit bulk peer-to-peer downloads [44] and Web transfers [114], the analysis demon-

strated that these benefits extend to an even wider range of applications. The second

purpose was to generate a trace of email messages with which to evaluate the modified

Postfix server.

This section first presents the analytical results from the analysis of the email

trace and then the evaluation of the DOT-enabled Postfix server.

Mail Server Trace Analysis

In the captured trace, each message records an actual SMTP conversation with the

mail server, recorded by a Sendmail mail filter. The traces are anonymized, reporting

the keyed hash (HMAC) of the sender, receiver, headers, and message body. The

anonymization also chunks the message body using a static sized chunk and Rabin

fingerprints and records the hashes of each chunk, corresponding to the ways in which

DOT could chunk the message for transmission. The analysis below examines how

many of these chunks DOT would transmit, but does not include the overhead of

DOT’s protocol messages. These overheads are approximately 100 bytes per 20 KB

of data, or 0.5%, and are much smaller than the bandwidth savings or the variance

between different days in the trace.

The email workload was an academic research group, with no notable email fea-

tures (such as large mailing lists). The mail server handles approximately 3,400 mes-

sages per day. The traces cover 1,010,905 messages over 301 days. The distribution

of email sizes, shown in Figure 6.13, appears heavy-tailed and consistent with other

findings about email distribution. The sharp drop at 10-20 MB represents common

cut-off values for allowed message sizes. Two message that were 224 MB and 86 MB

were eliminated as they were believed to have been test messages sent by the server

administrator.

This section examines four different scenarios. SMTP default examines the

number of bytes sent when sending entire, unmodified messages. With DOT body,

the mail server sends the headers of the message directly, and uses DOT to transfer

the message body. Only whole-file caching is performed: either the OID has been

received, or not. With Rabin body, the mail server still sends the headers separately,

but uses Rabin fingerprinting to chunk the DOT transfer. Finally, Rabin whole

sends the entire message, headers included, using DOT. Because the headers change
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Figure 6.13: Mail Message Size Distribution

for each message, sending a statically-chunked OID for the entire message is unlikely

to result in significant savings. The Rabin whole method avoids this problem, at

the cost of some redundancy in the first content block. Allowing the GTC to chunk

the entire message also allows the simplest integration with Postfix by avoiding the

need for the mail program to parse the message content when sending. The analysis

assumes that DOT is enabled on both SMTP clients and servers. Table 6.5 shows

the number of bytes sent by DOT in these scenarios.

In all, DOT saves approximately 20% of the total message bytes transferred by

the mail server. These benefits arise in a few ways. As can be seen in Figure 6.14,

a moderate number of messages are duplicated exactly once, and a small number of

messages are duplicated many times – nearly 100 copies of one message arrived at the

mail server. Second, as Table 6.5 showed, there is considerable partial redundancy

between email messages that can be exploited by the Rabin chunking.

While the study did not include the number of large email attachments that might

be more common in corporate environments, it did observe a few such examples. 1.5%

of the bytes in the trace came from a 10 MB email that was delivered eleven times

to local users. The administrator of the machine revealed that a non-local mailing

list to which several users were subscribed had received a message with a maximum-

sized email attachment. Such incidents occur with moderate frequency, and are a

common bane for email administrators. By alleviating the bandwidth, processing,
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Method Total Bytes Percent Bytes

SMTP default 16,228 MB -

DOT body 13,946 MB 85.94 %

Rabin body 12,013 MB 74.03 %

Rabin whole 12,907 MB 79.54 %

Savings using different DOT integration methods. The results does not include DOT
overhead bytes.

Table 6.5: Savings in Email Traffic using DOT
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and so on. One message was duplicated 4,180 times.

Figure 6.14: Histogram for Repetitions of Message Bodies

and storage pain from such incidents, DOT can help allow users to communicate

in the way most convenient to them, instead of following arbitrary decrees about

application suitability.

System Throughput

To evaluate DOT’s overhead, 10,000 email messages were generated from the begin-

ning of the mail trace. Each message is the same size as a message from the trace,

and the message’s content is generated from Rabin-fingerprint generated hash blocks

in the trace message. Each unique hash value is deterministically assigned a unique

content chunk by seeding a pseudo-random number generator with the hash value.
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Program Seconds Bytes sent

Postfix 468 172 MB

Postfix-DOT 468 117 MB

Table 6.6: Postfix Throughput for 10,000 Email Messages

The generated emails preserve some of the similarity between email messages, but

because it cannot regenerate the original content (or other content that contains the

same Rabin chunk boundaries), the generated emails are slightly less redundant than

the originals.

The 10,000 generated messages were replayed through Postfix running on the

same machines used for the portable storage evaluation, connected with 100 Mbit/s

Ethernet. Table 6.6 shows that the DOT-enabled Postfix required only 68% of the

total bandwidth, including all protocol overhead, but both systems had identical

transfer times.

The Postfix workload is extremely disk-seek bound. Neither the considerable

bandwidth savings or the slight CPU overhead provided by DOT was sufficient to

change this. A widespread adoption of DOT in mail servers would therefore have a

positive effect on bandwidth use without imposing noticeable overhead.

6.6 Discussion

The previous sections presented the benefits observed using the initial DOT imple-

mentation and discussed some of the benefits DOT can realize from a transfer service

in other scenarios. The experience with DOT thus far has revealed several lessons

and remaining challenges.

Efficiency. The design of the DOT default transfer protocol assumes that its ex-

tra round trips can be amortized across file transfers of sufficient length. While this

design is effective for DOT’s intended target of large transfers, ideally the transfer

service should be efficient for as many applications as possible, even if their transfers

are small. For example, highly interactive Web services such as Google go to consider-

able effort to reduce the number of round-trips experienced by clients, and providers

such as Akamai tout such reduction as a major benefit of their service. As the email
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study in Section 6.5.4 noted, email and many other protocols have a heavy-tailed

distribution with numerous small files being transferred.

There are two likely approaches that can reduce DOT’s overhead for small trans-

fers: either allow the application to send small objects directly, or implement a trans-

fer plugin that passes small objects in-line as a hint over its control channel to bypass

the need for additional communication. For reasons discussed below, the former may

be a better approach.

Application resilience. The DOT-enabled Postfix falls back to normal SMTP

communication if either the remote host does not support DOT or if it cannot contact

the GTC running on the local machine. This fallback to direct transfer makes the

resulting Postfix robust enough to run as the primary mail program on a user’s

personal machine. As Cappos and Hartman noted on Planetlab, applications that

depend on cutting-edge services are wise to fall back to simpler and more reliable

mechanisms [35]. Until a transfer service like DOT becomes a part of the Internet’s

core infrastructure, this is sound advice for any application making use of DOT.

Security. In a system like DOT, applications have several choices that trade

privacy for efficiency. The simplest way for an application to ensure privacy is to

encrypt its data before sending it to the transfer service. Unfortunately, this places

restrictions on the transfer service’s ability to cache data and obtain data from inde-

pendent sources. Another simple (and common) choice is to not encrypt the data at

all, and trust in whatever host or network security mechanisms are available. This

approach allows the transfer service the most opportunities to exploit features of the

data to improve transfers, but offers little security to the user. A promising middle

ground is to support convergent encryption [51], in which data blocks are encrypted

using their own hash values as keys. Only recipients that know the hashes of the

desired data can decrypt the data blocks.

DOT must interact with many different applications, each of which may have its

own mechanisms and policies for providing security and privacy. A transfer service

must support a wide variety of application requirements, and should not impose a

particular security model or flavor of cryptography or key management. However,

an efficient implementation of convergent encryption requires some support from the

transfer service: The algorithm that splits data into chunks must be consistent across

implementations, or the resulting encrypted blocks cannot be effectively cached. Ex-
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ploring how to support convergent encryption in the near future will give a better

insight into the tradeoffs.

Application preferences and negotiation. The current implementation of

DOT performs data transfers completely independently of the application. While

this suffices for a large and important class of applications, DOT should also be

able to benefit applications that desire more control over how their transfers are

effected. Examples of such applications include those that have specific encryption

requirements or that wish to take advantage of different sending rates or quality of

service categories.

The design of capability discovery and negotiation is an important part of future

work. As a first cut at supporting plugins that must negotiate specific capabilities,

two types of metadata are being added to DOT: per-object metadata that allows

the receiving side to construct the plugin-chain required to process the data; and

per-chunk metadata that allows the plugins to send information (such as encryption

keys) needed to process the chunks when they are received.

Selecting Plugins and Data Sources. A DOT receiver may be able to obtain

its desired data from multiple sources using several different plugins. The DOT ar-

chitecture uses a hierarchy of plugins, some of which implement selection policies, to

arbitrate between sources. If a variety of plugins become available, DOT’s plugin con-

figuration interface may need to evolve to support more sophisticated configurations

that allow plugins to determine the capabilities of their upstream and downstream

plugins. For example, it may be advantageous for a multi-path plugin to know more

about the capacities of attached links or storage devices. While such an interface could

be useful, its design would be purely speculative in the absence of a wide variety of

plugins from which to choose.

Several of the plugins represent promising starts more than finished products.

The multi-path plugin now supports fetching data from mirror sites and multi-homed

servers [106]. The portable storage plugin needs to be extended to support a “ren-

dezvous” service that allows devices to be plugged in to a third party machine, instead

of directly to the receiver.

Supporting dynamically generated objects. The design calls for DOT to

handle dynamically generated objects that cannot be fully hashed before transmission

by assigning them a random OID. This change requires a small modification to the
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API to return the OID before the put call has completed, and requires that the

remote get descriptors call be able to return an indicator that the receiver should

continue checking for more descriptors. A drawback is that random OIDs sever the

tie between the OID and the data contents, which prevents per-object (but not per-

chunk) caching.

Exploiting structure in data. A final issue in the design of DOT is the division

of labor between the application and the transfer service in dividing data into chunks.

In the current design, the transfer service is solely responsible for chunking. As the

evaluation of email traces showed, the use of Rabin fingerprinting can remove the need

for application-specific chunking decisions in some cases, but there may remain other

cases in which application knowledge is helpful. For instance, as shown in Ganesh and

Cedar, many applications transfer structured data. Databases, for certain workloads,

may return data that has repetitions at the row level, which may be much smaller

than DOT’s default chunk size. While the current techniques work well for email and

Web objects, the use of application or domain-specific chunking algorithms merits

further exploration.

6.7 Retrospective

DOT’s design draws heavily from the other systems described in this dissertation.

It uses techniques similar to those found in CASPER, Lookaside Caching, Ganesh,

and Cedar, and can be viewed as a generalization of these systems. However, it is

still useful to examine the tradeoffs made by switching from the application-specific

solutions described earlier to the generic data transfer architecture presented in this

chapter. Further, what would the above systems have looked like if a data transfer

service like DOT was available to begin with?

By comparing and contrasting the previous systems with DOT, one can quickly

see that some systems would easily work with a transfer service while others would

require more effort. Both CASPER and Lookaside Caching would work seamlessly

with DOT without any significant performance difference or the need to re-architect

the original system. For example, CASPER’s method of fetching a recipe from the

file server and then redirecting data fetches is identical to DOT’s approach of first

fetching a recipe from the sending application’s transfer service and then obtaining
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data from nearby sources such as edge caches and local mirrors. Similarly, DOT’s

OID would be an exact substitute for Lookaside Caching’s need for a whole-file hash.

Further, DOT’s support for content-based transfers as well as non-networked portable

storage would have dramatically reduced the implementation effort.

However, in contrasting DOT with Ganesh and Cedar, it is easier to see the

tradeoffs faced by system developers. Once data has been transferred to DOT, the

transfer service no longer has application or domain-specific knowledge about any

inherent structure in the data. If used together with Ganesh, a generic transfer

service would not be able to precisely determine chunk boundaries because it would

not know where each row of the database result ends. This problem was not faced

by systems like CASPER as the chunking algorithms only dealt with opaque data.

To address this, it is possible to build in heuristics within the transfer service to

detect popular object types and exploit knowledge of the internal formats of these

objects. While this requires an additional implementation effort, it should be possible

to optimize a large fraction of transfers.

Examples of other tradeoffs include the fact that application-specific solutions can

be optimized for specific workloads. For example, given the relatively small size of

database results and the cost of adding additional WAN round trips, both Ganesh

and Cedar try to aggressively minimize the number of required round trips for each

transfer. Ganesh’s server-side proxy can efficiently predict the contents of the client’s

cache while Cedar’s client first estimates what its local replica might contain before

sending a request to the database server. In contrast, DOT would first fetch the OID

for the result, then a recipe for the OID, and finally any missing data.

Due to a transfer service’s extensible nature, features such as Ganesh’s cache pre-

diction algorithm can be easily incorporated within DOT. The stale database replica

used by Cedar can be implemented as a network or even a storage plugin that can

be addressed via a hint, or URI, that would include the SQL query being optimized.

However, reducing the number of round trips, while possible, is a fundamental design

decision. DOT’s design is geared towards delivering data transfer functionality that

is beneficial for a large number of applications. While a generic transfer service can

improve performance in most cases, the performance gains seen, for certain categories

of applications, might be lower than those of application-specific solutions. Imple-

menting application-specific optimizations would introduce extra complexity in both

the transfer service’s implementation and its application API. Thus, I believe that
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the current design is the correct choice as it would allow for a faster adoption and

deployment of a transfer service.

6.8 Summary

This chapter presented the design and implementation of an extensible data-oriented

transfer service, DOT. DOT decouples application-specific content negotiation from

the more general process of transferring data across the network. Using such a transfer

service reduces re-implementation at the application layer and facilitates the adoption

of new technologies to improve data transfer. Through a set of microbenchmarks and

an examination of a production mail server modified to use DOT, this chapter has

shown that the DOT architecture imposes little overhead. DOT provides significant

benefits, reducing bandwidth use and making new functionality such as multi-path

or portable storage-based transfers readily available.

While the design still faces several challenges, introducing data transfer as a system

service is a worthwhile goal. While a number of different systems in this dissertation

have shown the advantage of using content-addressable techniques, a widely deployed

transfer service might be the simplest method for a large category of applications to

take advantage of content-based optimizations. If universally deployed, a content-

addressable service like DOT could provide significant benefits to both legacy and

future applications, networks, and ultimately, to users.
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Chapter 7

Related Work

This dissertation has made a number of contributions in showing the value of using

content-addressable techniques for legacy and future client-server systems over WANs.

This dissertation shows how performance can be improved even though the content-

addressable data sources used are untrusted, might contain data that is incorrectly

named or even no useful data, and make no guarantees about consistency.

As the systems covered in this dissertation are diverse and there is no single related

system, this chapter discusses related work that intersects different areas of it. First,

Section 7.1 describes other systems that use similar content-addressable techniques

and, in particular, content-addressable storage systems. Then, in Section 7.2, other

approaches to using portable storage are discussed. Next, Section 7.3 discusses other

database approaches to improving performance over the WAN. Finally, Section 7.4

describes other approaches to improving bulk data transfers.

7.1 Content-Addressable Systems

The use of content-addressable techniques to identify similar data in storage systems

has been explored previously. Single Instance Storage [23] uses content hashes for

compression, to coalesce duplicate files, and Venti [107] employs a similar approach

at the block level. Unlike delta encoding [52, 77, 88, 146, 156], these techniques do not

need a previous version of an object to compare against or any fixed file references.

While some systems, such as Bittorrent [44], use fixed size blocks to divide objects,
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the Rabin Fingerprinting technique [83, 108] has been used by a large number of

systems to identify intra and inter-object similarity for objects when no application or

domain-specific knowledge is available. Spring and Wetherall [137] used this technique

to identify and remove redundant network traffic, the Low Bandwidth File System [91]

for distributed file systems, the Pastiche backup system [46] for P2P backups, and by

Layer-2 bandwidth optimizers such as Riverbed to discover spans of commonality in

data. This approach, also used by CASPER and DOT, is especially useful when it can

be assumed that data items are modified in-place through insertions, deletions, and

updates. However, as shown in Ganesh, when this assumption fails, the performance

of this technique can show a dramatic drop in performance. In such situations, as

shown by both Ganesh and Cedar, using application-specific algorithms for detecting

similarity can be very valuable.

Example of other P2P networks that use cryptographic hashes to address data

include Distributed Hash Tables (DHTs) such as Chord [140], Pastry [120], and

CAN [112] and the storage and file systems, including CFS [48], PAST [53], and

Ivy [92], built on top of them. These systems are completely decentralized and share

the model that participants that join the overlay offer write access to their local

storage to other participants, either directly or indirectly. Adopting this architec-

ture requires a very dramatic shift in system design and usage. On the other hand,

this dissertation has shown how content-addressable storage can be used with legacy

systems, in a transparent manner, and without depending on the storage providers

always being available. In fact, one can envisage a hybrid model where the above

DHTs and P2P networks can act as data providers for systems like CASPER and

DOT. Clients can choose to use the widely dispersed providers when beneficial but

always have the benefit of being able to fall back on the centralized file servers.

Almost all of the above systems only use cryptographic hashes internally and do

not expose this metadata. In contrast, this dissertation has shown the value of making

the hash value a first class object and using it to query external data sources. This

increases the degrees of freedom available to a client as even potentially untrusted

sources can be accessed. Given the collision-resistant feature of cryptographic hash

functions that make the data self-verifying, it is easy for clients to check for correct-

ness. More recently, systems such as Shark [12] have used this approach to allow

distributed file system clients to securely share their local caches.

Further, a large number of the above systems use cryptographic hashes for address-
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ing persistent data. This represents a deeper level of faith in their collision-resistance

than that assumed by this dissertation. If time reveals shortcomings or weaknesses

in the hash algorithm, the effort involved in correcting the flaw for such systems is

much greater. As all the systems used in this dissertation only use cryptographic hash

functions for data in-flight, addressing such an event for them is merely a matter of

replacing the hash algorithm with a stronger one.

Note that using cryptographic hashes to query untrusted data sources might leak

information. For example, requesting files corresponding to a particular hash value

could allow the provider to determine what data the client is interested in. Of course,

this would assume that the provider had the data, and therefore the corresponding

hash value, to begin with. Using anonymous routing layers such as onion routers [50]

could mitigate this problem. Further, in systems such as Lookaside Caching, Ganesh,

and Cedar, the data providers are all trusted as they are either under the control of

the system (Ganesh) or the user (Lookaside Caching and Cedar).

Alternatively, if a client exposes its local cache, external clients might be able

to determine the user’s working set or look for well known objects such as pirated

digital media, sensitive or potentially embarrassing documents, etc. However, as

shown by Annapureddy et al. [12], this kind of sharing can be done in a secure

manner. Scenarios where a malicious server can inspect a client’s cache [89] does not

significantly impact this work as servers form a trusted part of the studied client-server

systems.

7.2 Portable Storage

The lookaside caching technique described in this dissertation has very different goals

and design philosophy from systems such as PersonalRAID [135], Segank [136], and

Footloose [100]. The starting point for lookaside caching is the well-entrenched base

of distributed file systems in existence today. It is assumed that these are successful

because they offer genuine value to their users. Hence, the goal of lookaside caching is

to integrate portable storage devices into such a system in a manner that is minimally

disruptive of its existing usage model. In addition, this technique makes no changes

to the native file system format of a portable storage device; all it requires is that the

device be mountable as a local file system at any client of the distributed file system.
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In contrast, all the above systems take a much richer view of the role of portable

storage devices. They view them as first-class citizens rather than as adjuncts to

a distributed file system. They also use customized storage layouts on the devices.

Therefore, while lookaside caching’s design and implementation is much simpler, it is

also more limited in functionality. Closer to the lookaside caching work is the Blue file

system [96] that combines the use of portable storage with distributed file systems,

but with an emphasis on energy efficiency.

Other projects with overlapping goals include the Personal Server [161] and Soul-

pad [31] efforts. The Personal Server system tries to integrate computation, com-

munication, and storage to provide ubiquitous access to personal information and

applications. However, being a mobile computer, it is more heavyweight in terms of

the hardware requirements. The Soulpad system uses a small standalone portable

device to carry a user’s data by encapsulating the operating system along with a

suspended virtual machine on the device. There are also a number of commercial

solutions providing mobility solutions through the use of portable storage devices.

Migo [86], one of these products, has combined a USB portable storage device with

synchronization software for personal files, email, and other settings. U3 [157], an

industry effort, allows applications to be executed directly from a specially formatted

USB flash drive. However, these systems focus exclusively on the use of the portable

device and do not integrate network storage.

7.3 Improving Database Performance

To the best of my knowledge, Ganesh and Cedar are the first systems that combine the

use of hash-based techniques with caching of database results to improve throughput

and response times for applications with dynamic content. I also believe that they

are also the first systems to demonstrate the benefits of using structural information

found in database results for detecting similarity. This section discusses alternative

approaches to caching database content and improving performance for mobile clients.
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7.3.1 Caching Database Content

At the database layer, a number of systems have advocated middle-tier caching where

parts of the database are replicated at the edge or server. Examples of such systems

include DBCache [6, 25, 82], MTCache [79], DBProxy [8, 9], and ABR-cache [49].

These systems either cache entire tables in what is essentially a replicated database

or use materialized views from previous query replies [78]. They require tight inte-

gration, and therefore source code access, with the back-end database to ensure a

time bound on the propagation of updates. These systems are also usually targeted

towards workloads that do not require strict consistency and can tolerate stale data.

Further, unlike Ganesh or Cedar, some of these mid-tier caching solutions [6, 7], suffer

from the complexity of having to participate in query planning and distributed query

processing.

Gao et al. [59] propose using a distributed object replication architecture where the

data store’s consistency requirements are adapted on a per-application basis. These

solutions require substantial developer resources and detailed understanding of the

application being modified. While systems that attempt to automate the partitioning

and replication of an application’s database exist [133], they do not provide full trans-

action semantics. In comparison, both Ganesh and Cedar are completely transparent

to both applications and databases and do not weaken any of the semantics provided

by the underlying database.

Recent work in the evaluation of edge caching options for dynamic web sites [165]

has suggested that, without careful planning, employing complex offloading strategies

can hurt performance. Instead, the work advocates for an architecture in which all

tiers except the database should be offloaded to the edge. For centralized databases,

to improve database scalability, C-JDBC [38], Ganymed [103], and GlobeTP [63] also

advocate the use of an interposition-based architecture to transparently cluster and

replicate databases at the middleware level. The approaches of these architectures

and this dissertation are complementary and they would benefit each other.

Moving up to the presentation layer, there has been widespread adoption of

fragment-based caching [54, 110], which improves cache utilization by separately

caching different parts of generated web pages. While fragment-based caching works

at the edge, a recent proposal has proposed moving web page assembly to the clients

to optimize content delivery [109]. Delta encoding [16, 88] of web content has also
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been advocated as an approach to reducing data transfer. While Ganesh and Cedar

are not used at the presentation layer, the same principles have been applied in Dupli-

cate Transfer Detection [89] to increase web cache efficiency as well as for web access

across bandwidth limited links [114].

7.3.2 Mobile Database Systems

While the benefits of caching data in mobile systems has long been known [41], most

systems weaken traditional consistency semantics for performance reasons. Weakly-

Consistent replication in Bayou [144] was proposed for collaborative systems. Alonso

et al. [5] proposed quasi-copies for database systems to improve performance by re-

laxing consistency when clients participate in caching data. The Mariposa [131] dis-

tributed data manager showed how consistent, although potentially stale, views can

be seen across a network of machines. Gray et al. [62] proposed a two-tier replication

scheme that allows tentative update transactions on the mobile client that are later

committed to the master copy.

An obvious disadvantage of these systems is that they provide a different con-

sistency or transactional model than what developers and users expect. Tentative

transactions increase the probability of conflicts and require additional application

complexity or user interaction for conflict resolution. In contrast, this dissertation’s

focus is on maintaining the transactional and consistency semantics provided by the

underlying database. While this design decision prevents disconnected operation, this

is an acceptable tradeoff for an important class of real-world usage scenarios.

Barbará and Imielinski [18] suggest informing mobile databases clients of changes

made to a database server by broadcasting Invalidation Reports (IRs) at periodic

intervals. However, being a push-based system, IRs are only effective if a large number

of clients are interested in the same data. While hybrid push-pull systems have been

proposed [1], in the absence of locality, they degenerate into a pull-based behavior.

Further, if clients are disconnected for longer than the time window covered by the

IRs, they need to discard their entire cache. While there is related work to alleviate

this problem [34, 70, 163], these techniques are are only effective in a broadcast

medium when a large number of clients are interested in the same data. IRs also add

significant latency to queries as each mobile client has to wait for the periodic IR

broadcast before it can verify data freshness. In contrast, systems like Cedar use a
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purely opportunistic approach to finding the required results. Barbará [17] provides

a more complete survey of previous work on IRs and mobile databases.

Some systems [17, 167] allow clients to obtain an exclusive copy of the section of the

database it is accessing. This can significantly degrade performance for other clients

when mobile clients are weakly connected. By recognizing that the local database

replica could be stale, Cedar instead ensures that there is no strong dependency

between the main database server and the mobile client.

Cedar’s hoard profiles also bear some similarity to clustering attributes [15] and

client profiles [28]. While these methods are also used to express preferences for

database content, they have very different functions. Clustering attributes define a

database server’s storage layout for improved access by mobile clients. Client pro-

files are used to indicate freshness and latency requirements for systems that relax

consistency.

7.4 Improving WAN-Based Bulk Data Transfers

There are a number of efforts that have explored better ways to accomplish data

transfers and architectures that insert a protocol between the application and the

transport layers. DOT differs from prior work in choosing an architectural split

(running as a service and primarily supporting point-to-point object transfers) that

is both powerful enough to support a diverse set of underlying mechanisms, and

generic enough to apply to a wide variety of applications.

The design for DOT borrows from content-addressable systems such as CASPER,

BitTorrent, and DHTs. Like DHTs, DOT uses content-based naming to provide an

application-independent handle on data. DOT also bears similarity to the Internet

Backplane Protocol (IBP) [19], which aims to unify storage and transfer, particularly

in Grid applications. Unlike IBP, DOT does not specify a particular underlying

method for data transfer; rather, DOT separates transfer methods from applications,

so that future protocols like IBP could be implemented and deployed more rapidly.

At the protocol level, BEEP, the Blocks Extensible Exchange Protocol [119], is

close in spirit to DOT. BEEP aims to save application designers from re-inventing

an application protocol each time they create a new application, by providing fea-

tures such as subchannel multiplexing and capability negotiation on top of underlying
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transport layers. BEEP is a protocol framework, available as a library against which

applications can link and then extend to suit their own needs. BEEP’s scope covers

the application’s content negotiation and data transfer. In contrast, DOT is a service

that is shared by all applications; thus, a single new DOT plug-in can provide new

transfer mechanisms or interpose on data to all applications.

Protocols such as FTP [105], GridFTP [145], ISO FTAM (ISO 8571), and even

HTTP [57] can be used by applications to access data objects, either by invoking a

client for that protocol or by implementing it within the application protocol. Many

of the transfer techniques that distinguish these protocols (e.g., GridFTP’s use of

parallel data streams or negotiation of transfer buffer sizes) could be implemented as

a DOT transfer plugin. By doing so, an unmodified “DOT-based” FTP client would

then be able to take advantage of the new functionality, reducing the effort required

to adopt the protocol enhancements.

Proxies are commonly used to process legacy application traffic in new ways.

While DOT aims to be more general than application-specific examples such as Web

proxies, it bears resemblance to generic proxies such as the DNS-based OCALA [72]

or the packet capture approaches used by RON [11] and the X-bone [153] to re-route

traffic to an overlay. The drawback of these more generic approaches is that they lack

knowledge of what the application is attempting to do (e.g., transfer a certain block

of data) and so become limited in the tools they can apply. However, some of the

advantages of DOT can be realized through the use of protocol-specific proxies. For

example, the DOT-enabled Postfix email server can be used as a mail relay or mail

proxy when co-located with unmodified mail servers.

The initial DOT plugins borrow techniques from several systems described in

this dissertation. From CASPER, DOT borrows the idea of using recipes to reduce

bandwidth usage. The portable storage plugin was strongly influenced by the work

on lookaside caching.

Finally, distributed object and file systems attempt to provide a common layer for

implementing distributed systems. These systems range from AFS [68] and NFS [32]

to research systems too numerous to cover in detail. Prominent among these are

the storage systems that use content-addressable techniques for routing, abstracting

identity, and saving bandwidth and storage [46, 48, 53, 91, 107, 149]. Like these

distributed storage systems, DOT aims to mask the underlying mechanics of network
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data transfer from applications. Unlike these systems, DOT does not provide a single

mechanism for performing the transfers. Its extensible architecture does not assume

a “one size fits all” model for the ways applications retrieve their data. The user of a

DOT-based application should not be forced to depend on an underlying distributed

system if they only wish to perform point-to-point transfers. DOT complements many

of these distributed systems by providing a single location where service developers

can hook in, allowing applications to take advantage of their services.
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Chapter 8

Conclusion

Efficient access to bulk data over the Internet has become a critical problem in today’s

world. Even while bandwidth, both in the core and at the edge of the network, is

improving, the simultaneous growth in the use of digital media and large personal

data sets is placing increasing demands on it [2, 90]. Further, with increasing trends

towards mobility and data access over cellular and wireless networks, optimizing bulk

data transfers for client-server systems will be valuable in the years to come.

This dissertation has presented a detailed exploration of how the use of content-

addressable techniques can be a powerful tool in optimizing these data transfers over

the WAN. It has put forward the thesis that these techniques can be useful for both

legacy and future client-server systems. They allow external data sources to be used

without weakening any attributes, including consistency, of legacy systems. This

thesis has been empirically validated by a number of case studies. First, the use of

content-addressable techniques was examined in the context of four distinct systems

that covered the two traditional forms of data storage: file systems and database

systems. Next, the underlying principles behind these systems were generalized to

present a unified architecture for improving bulk data transfer across different sys-

tems, applications, and protocols.

In this chapter, Section 8.1 begins with a review of the contributions of this

dissertation. Next, Section 8.2 discusses future directions for the research outlined in

this work. Finally, Section 8.3 concludes with a review of the major lessons learned

from this dissertation.
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8.1 Contributions

The contributions of this dissertation can be divided into three broad areas. First, the

conceptual contributions consist of the novel ideas generated by this research. Second,

there exist a number of software artifacts that were built as a part of this dissertation.

The final contribution is the experimental results that validate the thesis. This section

discusses each of these contributions in turn.

8.1.1 Conceptual Contributions

While other systems have identified content-addressable techniques as a possible so-

lution to the bulk data transfer problem, the proposed solutions have usually required

significant changes to system design. For example, using DHTs [120, 140] involves a

paradigm shift from traditional client-server based architectures to a peer-to-peer sys-

tem. Other solutions have required significant system modification or redesign [100],

introduced new standalone applications [44], relaxed traditional consistency seman-

tics [136], or required changes in user behavior.

In contrast, this work has shown how, for traditional client-server systems, content-

addressable techniques can be used in a transparent manner without weakening any

of the traditional properties or semantics of the original system. For legacy systems

with standardized interfaces, these techniques can be used without modification to

the original systems or applications. Even for systems that lack such standardized

interfaces, this dissertation has shown that the changes required are minor and con-

fined to small areas of the codebase. Further, applications that use these systems

require no modifications at all.

8.1.2 Software Artifacts

In the course of this dissertation, I developed a number of major software artifacts

that were used to validate the thesis. They include the CASPER file system which

has been used by other researchers and the Lookaside Caching system that is now a

part of the production Coda file system [124].

Next, I designed and created the Ganesh and Cedar systems that were used to

evaluate the effectiveness of content-addressable techniques with database systems.
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These two artifacts have been used in class projects and, once open sourced, could

serve as the basis for further research in the area. My research into database systems

also involved significant work on benchmarks. I made significant improvements to

the AUCTION and BBOARD benchmarks used to evaluate Ganesh. I also generated new

datasets for these benchmarks that more accurately reflect current systems. These

two benchmarks have since been used for the evaluation of other database systems.

The MobileSales benchmark, created for the evaluation of mobile database clients,

has also been open sourced.

Finally, the DOT system that was created as a generalization of my work has also

been released as open source software (OSS). It is predicted that DOT will serve as

an infrastructure for inventors of other innovative transfer techniques. Apart from

being used as the codebase in the SET [106] system, DOT is also being used by other

projects outside of Carnegie Mellon University.

8.1.3 Evaluation Results

The evaluation results in this dissertation contain important insights for future sys-

tems that use content-addressable techniques. They have shown how performance

gains in WANs are possible by exploiting commonality in data streams. As the use of

content-addressable techniques have low overhead, a system’s performance can still

be improved even when the amount of commonality is low.

The evaluation has also shown in which cases the use of content-addressable tech-

niques should be avoided. Such scenarios include very high bandwidth and low latency

networks. In these scenarios, the cost of extra round trips to fetch recipes and the

overhead of computing cryptographic hashes over the data might outweigh any sav-

ings in the actual data transfer. While the cost of hashing will be reduced in the

future with the advent of increasingly powerful CPUs, the extra round trips needed

to fetch a recipe might make the use of these techniques unsuitable for applications

that predominantly initiate small data transfers. Examples of applications include

Instant Messaging and the telnet remote console tool. Other unsuitable applications

would include those that have strict real-time constraints, such as video conferencing.

Finally, the results have also shown that a broad category of applications and

workloads can benefit from similarity. These workloads include email, users of a
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distributed file system, users of virtual machines, ecommerce systems, and mobile

database access. It is predicted that the general trends will also be visible in other

workloads that exhibit data similarity or sharing.

8.2 Future Work

This dissertation has opened up several avenues for future research. Some of these are

extensions of work described here while others have a much broader scope. This sec-

tion describes some of the possible directions for building upon the research described

here.

8.2.1 System Extensions

For a successful adoption, a number of systems described in this dissertation need to

be extended to support for a richer set of features. For example, in Cedar, hoarding

data on a mobile client can have privacy, security, and regulatory concerns as the loss

or theft of a mobile device can expose confidential data. While one can elide sensitive

database fields, this can lead to a performance loss if queries frequently reference

those fields. Another possible alternative for data protection is to encrypt sensitive

data. Encryption could be implemented in a number of ways, including at the storage

layer [116], within the client replica [65], or even within the client proxy [45]. These

choices need to be carefully evaluated in order to minimize encryption’s impact on

resource-limited clients. Cedar’s impact on power consumption has also not yet been

considered. While reducing network transmission has been shown to save power,

there is a tradeoff as Cedar uses computational cycles to achieve the reduction. A

careful investigation is needed to determine how power should be factored into Cedar’s

adaptation mechanisms.

In the current DOT prototype, all transfers are treated equally. While this suf-

fices for a large and important class of applications, applications might desire more

control over their transfers. Examples of such applications include those that have

specific encryption requirements, those that wish to give higher or lower priorities

to transfers or take advantage of quality of service categories. Further, in the event

of a widescale deployment of a transfer service, it is highly probable that different
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implementations would support overlapping methods of transferring data. In such

scenarios, DOT’s plugin configuration interface may need to evolve to support more

sophisticated configurations that allow plugins to support feature negotiation, deter-

mine the capabilities of their upstream and downstream plugins, and dynamically

configure plugin chains.

8.2.2 Studies of Similarity in the Real World

While this dissertation has looked at some studies of similarity in the real world,

including the source code in CASPER and email trace data in DOT, I believe a more

careful study of similarity is needed. Due to privacy and feasibility issues, previous

studies have either limited themselves to metadata [2, 125, 132] or been restricted to

publicly available datasets [89, 104]. I believe a wider commonality study is needed

that covers both corporate and home users. Not only will this help in accurately iden-

tifying workloads that would benefit from the use of content-addressable techniques,

but it will also quantify the degree of cross-user, or communal, sharing of data.

8.2.3 Provisioning Content Addressable Repositories

As the systems described in this dissertation depend upon finding similarity to im-

prove performance, correctly populating content-addressable data sources can make

a significant impact on system performance. While the increasingly large storage

capacities of both hard drives will help, transfer time to populate remote networked

stores might be limited by a client’s available network bandwidth.

While tools such as the SQL log miner used by Cedar are a step in the right

direction, more work needs to be done. First, the data selection should be automated

as far as possible so that minimum input is needed from users. Machine learning

techniques could be very useful to accomplish this goal as they can discover user

behavior based on historical use and tailor caching based on these observations. When

storage on the repository is limited, these observations can also be used to select the

most frequently accessed data. Second, security concerns must be addressed so that

either no personal or confidential data is injected into the network or that is it properly

encrypted and secured.
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8.2.4 Choosing between Content Addressable Repositories

Apart from the deciding what data should be cached, properly selecting data sources

for use will also be very valuable in both improving performance as well as ensuring

low overhead when content-addressable techniques are used. For example, as Cedar

showed, due to the slow seek time of hard drives, even if the needed data is present on

local storage, it might be faster to access it over the LAN if the server has it present

in its cache. Similarly, if the network has a higher bandwidth than an attached

flash-based storage device, lookaside caching showed that it might be faster to use

the network. On the other hand, if the original source is overloaded, it might be

beneficial to explore the use of external data repositories that might have a higher

access time [106].

While these are simple examples, the problem becomes more complex as the num-

ber of potential sources increases. Using DOT as an example, there might be a

number of different methods of transferring data, with each having different perfor-

mance, latency, and overhead characteristics. As using all of them in parallel might

not always be desirable or even feasible, the decision on what sources to use and when

needs to be made into a dynamic process. Assuming that the costs and benefits of

each resource are measurable, an optimization framework to choose between different

networked and non-networked resources could prove to be very valuable.

8.3 Concluding Remarks

This dissertation has put forward the claim that content-addressable techniques could

be used to optimize bulk data transfer in WAN-based client-server systems. By

detecting similarity between different sources of data, these techniques allow external

sources to be used without weakening any attributes, including consistency, of legacy

systems with no or minor changes to the original system.

This claim has been empirically validated through the use of five case studies

that encompass the two traditional forms of data storage, file systems and database

systems, and then generalized in the form of a generic transfer service that can be

shared by different applications. Each of these case studies showed that, even with

the addition of content-addressable techniques, the resulting system still maintained
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the attributes and semantics of the original system. A careful evaluation of the

prototypes with both synthetic and real benchmarks showed that the use of these

content-addressable techniques had low overhead and provided a substantial perfor-

mance improvement when compared to the original system.
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