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Innovation In Data Transfer 1s Hard
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* Imagine: You have a novel data transfer technigque

 How do you deploy?
1. Update HTTP. Talk to IETF. Modify Apache, IIS, Firefox,
Netscape, Opera, IE, Lynx, Wget, ...
2. Update SMTP. Talk to IETF. Modify Sendmail, Postfix, Outlook...
3. Give up in frustration
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Barriers to Innovation in Data Transfer

« Applications bundle:

 Content Negotiation: What data to send
—Naming (URLs, directories, ...)
— Languages
— ldentification

 Data Transfer: Getting the bits across

e Both are tightly coupled (e.g., HTTP, SMTP)

e Hinders innovation and evolution of new
services
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Solution: A Data Transfer Service

. Application Protocol .
and Data
[Xfer Service Xfer Service}
Data

« Decouple content negotiation from data transfer
* Applications perform negotiation as before

« But hand data objects to the Transfer Service
 The Transfer Service is shared by applications

4 Niraj Tolia © May 2006



Extensible Transfer Architecture
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v" Application-independent cache
v New network features
v Non-networked transfers
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Transfer Service Benefits

v Apps. can reuse available transfer techniques
* No reimplementation needed

v Easier deployment of new technologies
« Applications need no modification

v Provides for cross-application sharing
e Can interpose on all data transfers

v Handles transient disconnections
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Outline

Motivation

Data Oriented Transfer (DOT) service
Evaluation

Open Issues and Future Work
Conclusion
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10,000 Foot View of Transfers using DOT
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e How does the transfer service name data?
e How does the transfer service locate data?
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DOT: Object Naming

Application defined names are not portable
Use content-naming for globally unigue names
Objects represented by an OID

File Cryptographic Hash
Objects are further sub-divided into “chunks”

— &2 — Descl
R
— 2 — Desc3

« Each OID corresponds to a list of descriptors
e Descriptor lists allow for partial transfers
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DOT: Object Location

 Data transfers in DOT are receiver driven
e Recelver has better idea of available resources

o Senders specify ‘hints’ - potential data locations
—dot://sender.example.com:12000/
—dht://opendht.org/
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A Transfer using DOT
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DOT’s Modular Architecture

_Application ]
(1) Application
API
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Transfer Plugin API

e Simple API
e get _descriptor_list( OID, hints )
e get _chunks( descriptor_list, hints )
o cancel _chunks( chunk_list)

« Transfer plugin chaining Is easy

e e.g., multipath plugin Transfer
/l Plugin

i\/lultiPath Network
[ Lo Plugin

\Transfer
Plugin
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Implementation

In C++ using libasync event-driven library

One storage plugin:
— In-memory hash tables, disk backed.
Three transfer plugins:
« Default Xfer-Xfer plugin
« Portable Storage plugin
« Multipath plugin

Applications
e gcp, an scp-like tool for file transfers

e A DOT-enabled Postfix emall server
— Included a socket-like adapter library
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Current DOT Prototype
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- “““““““““ v Application-independent cache
v Multipath and Mirror support

v Non-networked transfers
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Outline

Motivation

Data Oriented Transfer (DOT) service
Evaluation

Open Issues and Future Work
Conclusion

16 Niraj Tolia © May 2006



Evaluation

Standard file transfer
Portable Storage
Multi-Path

Case Study: Postfix Email Server

« Capture and analysis of emaill trace

e Evaluation of DOT-enabled SMTP server
 Integration effort
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Standard File Transfer Setup

Network
Emulator

Two DOT-enabled machines

Network Emulator
« Evaluate various b/w + delay combinations

Use gcp for the file transfers

Used 40MB, 4MB, 400KB, 40KB, 4KB files
* Presenting 40MB here
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Standard File Transfer
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 Overhead: hashing, extra RTT
* No noticeable overheads with latency
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Portable Storage Experiment

2 Mbit/s

e 255 MB transfer over emulated DSL

e Based on Virtual Machine transfers at Carnegie Mellon
 DOT preemptively copies data onto Flash drive

e Wait 5 minutes, plug flash drive into receiver

e Two drive speeds

« 8MB/s - 1GB
« 20MB/s - 2GB
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Portable Storage Results
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Multipath Plugin: Load Balancing

Network
Emulator

Experimental links

« Varied capacity + delay of experimental links

« Compare fastest link alone with multipath plugin
on both links; what speedup?

e Transferred 40MB file
128 KB socket buffer sizes
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-40 MB @ 100Mbit/s ideal: 3.2 seconds

-Multipath plugin nearly doubles throughput

- TCP effects dominate. Pipe not full.

- Multipath plugin doubles by adding second
stream. Actual capacity irrelevant.
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Postfix Emall Trace Replay

 Generated 10,000 email messages from trace
 Random data matched to chunk hash data
* Preserves some similarity between messages
* Replayed through Postfix to a single local server

Program Seconds Bytes Sent
Postfix 468 172 MB
Postfix + DOT |468 117 MB (68%)

» Postfix disk bound... DOT CPU overhead negligible
e Savings due to duplication within emails
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Postfix Integration

 Integrated DOT with the Postfix mail server
Program LoC Added LoC %
GTC Lib - 421
Postfix 70,824 184 0.3%
smtpd 6,413 107 1.7%
smtp 3,378 /1 2.1%

e 1 part-time week, 1 student new to Postfix
 Includes time to write generic adapter library
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Discussion on Deployment

e Application Resilience

e DOT Is a service - it's outside the control of the
application.

e Our Postfix falls back to normal SMTP |f
—No Transfer Service contact

— Transfer keeps failing

* In the short term, a simple fallback is encouraged.
However, this could interfere with some functions

— DOT-based virus scanner...

* In the long term, DOT would be a part of a
system’s core infrastructure
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Future Work

e Security
« Application encrypts before DOT
- No block-based caching, reuse, mirroring, ...
* No encryption
- Resembles the status quo
* In progress: Convergent encryption
— Requires integration with DOT chunking

* Application Preferences
* Encryption, QoS, priorities, ...
— DOT might benefit from application input
* Need an extensible way to express these
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Conclusion

« DOT separates app. logic from data transfer
 Makes it easier to extend both

« Architecture works well
 Overhead low (especially in wide-area)
e Major benefits
e Caching
 Flexibility to implement new transfer techniques

e Source code available on request

http://www.cs.cmu.edu/~dga/dot/
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