An Architecture for Internet Data Transfer

Niraj Tolia
Michael Kaminsky*, David G. Andersen, and Swapnil Patil

Carnegie Mellon University and *Intel Research Pittsburgh

Innovation In Data Transfer 1s Hard

CAN DataStagingRiverbed Segank BlueFS

Bittorrent hstry ASPER | OpenDHT

| -
2002 J 2003
2001 / 2006

Chord IBP Value-Caching Bullet Avalanche CoBlitz

LBFS Lookaside Caching

* Imagine: You have a novel data transfer technigque

 How do you deploy?
1. Update HTTP. Talk to IETF. Modify Apache, IIS, Firefox,
Netscape, Opera, IE, Lynx, Wget, ...
2. Update SMTP. Talk to IETF. Modify Sendmail, Postfix, Outlook...
3. Give up in frustration

2 Niraj Tolia © May 2006

Barriers to Innovation in Data Transfer

« Applications bundle:

 Content Negotiation: What data to send
—Naming (URLs, directories, ...)
— Languages
— ldentification

 Data Transfer: Getting the bits across

e Both are tightly coupled (e.g., HTTP, SMTP)

e Hinders innovation and evolution of new
services

3 Niraj Tolia © May 2006

Solution: A Data Transfer Service

. Application Protocol .
and Data
[Xfer Service Xfer Service}
Data

« Decouple content negotiation from data transfer
* Applications perform negotiation as before

« But hand data objects to the Transfer Service
 The Transfer Service is shared by applications

4 Niraj Tolia © May 2006

Extensible Transfer Architecture

Application Protocol

»
L

USB > Bittorrent
Keychain Bittorrentesseeeeesssssse®®®’
Local
Cache
I | USB
P uglns Keychain

v" Application-independent cache
v New network features
v Non-networked transfers

5 Niraj Tolia © May 2006

Transfer Service Benefits

v Apps. can reuse available transfer techniques
* No reimplementation needed

v Easier deployment of new technologies
« Applications need no modification

v Provides for cross-application sharing
e Can interpose on all data transfers

v Handles transient disconnections

6 Niraj Tolia © May 2006

Outline

Motivation

Data Oriented Transfer (DOT) service
Evaluation

Open Issues and Future Work
Conclusion

7 Niraj Tolia © May 2006

10,000 Foot View of Transfers using DOT

Request File X
-/
put(X) 2 read()
data
?

[Xfer Servicej—b[Xfer Service}

e How does the transfer service name data?
e How does the transfer service locate data?

8 Niraj Tolia © May 2006

DOT: Object Naming

Application defined names are not portable
Use content-naming for globally unigue names
Objects represented by an OID

File Cryptographic Hash
Objects are further sub-divided into “chunks”

— &2 — Descl
R
— 2 — Desc3

« Each OID corresponds to a list of descriptors
e Descriptor lists allow for partial transfers

9 Niraj Tolia © May 2006

OID

DOT: Object Location

 Data transfers in DOT are receiver driven
e Recelver has better idea of available resources

o Senders specify ‘hints’ - potential data locations
—dot://sender.example.com:12000/
—dht://opendht.org/

10 Niraj Tolia © May 2006

A Transfer using DOT

Request File X

put(X) OID, Hints

~

get(OID, Hints)

Transfer

[Xfer Service

J

Plugins

read()
data

S~

11

" Xfer Service}

U

Niraj Tolia © May 2006

DOT’s Modular Architecture

_Application]
(1) Application
API
Transfer| Network

DOT Plugin
(3) Storage Plugin I (2) Transfer
AP Plugin API

Storage

Plugin

‘ Local Storage |

12

Niraj Tolia © May 2006

Transfer Plugin API

e Simple API
e get _descriptor_list(OID, hints)
e get _chunks(descriptor_list, hints)
o cancel _chunks(chunk_list)

« Transfer plugin chaining Is easy

e e.g., multipath plugin Transfer
/l Plugin

i\/lultiPath Network
[Lo Plugin

\Transfer
Plugin

13 Niraj Tolia © May 2006

Implementation

In C++ using libasync event-driven library

One storage plugin:
— In-memory hash tables, disk backed.
Three transfer plugins:
« Default Xfer-Xfer plugin
« Portable Storage plugin
« Multipath plugin

Applications
e gcp, an scp-like tool for file transfers

e A DOT-enabled Postfix emall server
— Included a socket-like adapter library

14 Niraj Tolia © May 2006

Current DOT Prototype

. NET
Y wireless

SENDER

NET

xfer | Plugins

- “““““““““ v Application-independent cache
v Multipath and Mirror support

v Non-networked transfers

15 Niraj Tolia © May 2006

Outline

Motivation

Data Oriented Transfer (DOT) service
Evaluation

Open Issues and Future Work
Conclusion

16 Niraj Tolia © May 2006

Evaluation

Standard file transfer
Portable Storage
Multi-Path

Case Study: Postfix Email Server

« Capture and analysis of emaill trace

e Evaluation of DOT-enabled SMTP server
 Integration effort

17 Niraj Tolia © May 2006

Standard File Transfer Setup

Network
Emulator

Two DOT-enabled machines

Network Emulator
« Evaluate various b/w + delay combinations

Use gcp for the file transfers

Used 40MB, 4MB, 400KB, 40KB, 4KB files
* Presenting 40MB here

18 Niraj Tolia © May 2006

Standard File Transfer

@ wget W scp [scp w/o encr. CIgcp

m 5.0 -
=
S 4.0 - K3 o i
2
@ 3.0
)
£ 20
- Y
B ~
1.0 - o S
(- o
©
— 0.0
1000 Mb/s 100 Mb/s

 Overhead: hashing, extra RTT
* No noticeable overheads with latency

19 Niraj Tolia © May 2006

Portable Storage Experiment

2 Mbit/s

e 255 MB transfer over emulated DSL

e Based on Virtual Machine transfers at Carnegie Mellon
 DOT preemptively copies data onto Flash drive

e Wait 5 minutes, plug flash drive into receiver

e Two drive speeds

« 8MB/s - 1GB
« 20MB/s - 2GB

20 Niraj Tolia © May 2006

Portable Storage Results

Data Transferred (MB)

300

250 r

200 r

150 r

100 r

50 |

0

260 270 280 290 300 310 320 330 340

Portable Storage - 20 MB/s
Portable Storage - 8 MB/s
SCp ------------

Device Inserted

1

Time (sec)

21 Niraj Tolia © May 2006

Multipath Plugin: Load Balancing

Network
Emulator

Experimental links

« Varied capacity + delay of experimental links

« Compare fastest link alone with multipath plugin
on both links; what speedup?

e Transferred 40MB file
128 KB socket buffer sizes

22 Niraj Tolia © May 2006

-40 MB @ 100Mbit/s ideal: 3.2 seconds

-Multipath plugin nearly doubles throughput

- TCP effects dominate. Pipe not full.

- Multipath plugin doubles by adding second
stream. Actual capacity irrelevant.

23 Niraj Tolia © May 2006

Postfix Emall Trace Replay

 Generated 10,000 email messages from trace
 Random data matched to chunk hash data
* Preserves some similarity between messages
* Replayed through Postfix to a single local server

Program Seconds Bytes Sent
Postfix 468 172 MB
Postfix + DOT |468 117 MB (68%)

» Postfix disk bound... DOT CPU overhead negligible
e Savings due to duplication within emails

24

Niraj Tolia © May 2006

Postfix Integration

 Integrated DOT with the Postfix mail server
Program LoC Added LoC %
GTC Lib - 421
Postfix 70,824 184 0.3%
smtpd 6,413 107 1.7%
smtp 3,378 /1 2.1%

e 1 part-time week, 1 student new to Postfix
 Includes time to write generic adapter library

25 Niraj Tolia © May 2006

Discussion on Deployment

e Application Resilience

e DOT Is a service - it's outside the control of the
application.

e Our Postfix falls back to normal SMTP |f
—No Transfer Service contact

— Transfer keeps failing

* In the short term, a simple fallback is encouraged.
However, this could interfere with some functions

— DOT-based virus scanner...

* In the long term, DOT would be a part of a
system’s core infrastructure

26 Niraj Tolia © May 2006

Future Work

e Security
« Application encrypts before DOT
- No block-based caching, reuse, mirroring, ...
* No encryption
- Resembles the status quo
* In progress: Convergent encryption
— Requires integration with DOT chunking

* Application Preferences
* Encryption, QoS, priorities, ...
— DOT might benefit from application input
* Need an extensible way to express these

27 Niraj Tolia © May 2006

Conclusion

« DOT separates app. logic from data transfer
 Makes it easier to extend both

« Architecture works well
 Overhead low (especially in wide-area)
e Major benefits
e Caching
 Flexibility to implement new transfer techniques

e Source code available on request

http://www.cs.cmu.edu/~dga/dot/

28 Niraj Tolia © May 2006

