
An Architecture for Internet Data Transfer

Niraj Tolia

Michael Kaminsky*, David G. Andersen, and Swapnil Patil

Carnegie Mellon University and *Intel Research Pittsburgh

Niraj Tolia © May 20062

Innovation in Data Transfer is Hard

• Imagine: You have a novel data transfer technique
• How do you deploy?

1. Update HTTP. Talk to IETF. Modify Apache, IIS, Firefox,
Netscape, Opera, IE, Lynx, Wget, …

2. Update SMTP. Talk to IETF. Modify Sendmail, Postfix, Outlook…
3. Give up in frustration

Niraj Tolia © May 20063

Barriers to Innovation in Data Transfer
• Applications bundle:

• Content Negotiation: What data to send
– Naming (URLs, directories, …)
– Languages
– Identification
– …

• Data Transfer: Getting the bits across

• Both are tightly coupled (e.g., HTTP, SMTP)
• Hinders innovation and evolution of new

services

Niraj Tolia © May 20064

Solution: A Data Transfer Service

• Decouple content negotiation from data transfer
• Applications perform negotiation as before
• But hand data objects to the Transfer Service

• The Transfer Service is shared by applications

Application ProtocolSender Receiver

Xfer Service Xfer Service

and Data

Data

Niraj Tolia © May 20065

Application Protocol

Extensible Transfer Architecture

Sender Receiver

Xfer Service

USB
Keychain

Xfer Service

Local
Cache

USB
Keychain

Bittorrent

Application-independent cache

Non-networked transfers
New network features

Bittorrent

Plugins

Niraj Tolia © May 20066

Transfer Service Benefits
Apps. can reuse available transfer techniques
• No reimplementation needed

Easier deployment of new technologies
• Applications need no modification

Provides for cross-application sharing
• Can interpose on all data transfers

Handles transient disconnections

Niraj Tolia © May 20067

Outline
• Motivation
• Data Oriented Transfer (DOT) service
• Evaluation
• Open Issues and Future Work
• Conclusion

Niraj Tolia © May 20068

Xfer ServiceXfer Service

Sender Receiver

10,000 Foot View of Transfers using DOT

Request File X

put(X) read()
data

• How does the transfer service name data?
• How does the transfer service locate data?

??

??

Niraj Tolia © May 20069

• Application defined names are not portable
• Use content-naming for globally unique names
• Objects represented by an OID

• Objects are further sub-divided into “chunks”

• Each OID corresponds to a list of descriptors
• Descriptor lists allow for partial transfers

FileFileFile

Desc3Desc3

DOT: Object Naming

Foo.txtFoo.txtFoo.txt OIDOID

File Cryptographic Hash

Desc1Desc1
Desc2Desc2

Niraj Tolia © May 200610

DOT: Object Location
• Data transfers in DOT are receiver driven

• Receiver has better idea of available resources

• Senders specify ‘hints’ - potential data locations
– dot://sender.example.com:12000/
– dht://opendht.org/
– …

Niraj Tolia © May 200611

Xfer ServiceXfer Service

Sender Receiver

A Transfer using DOT

Request File X
OID, Hints

put(X) OID, Hints get(OID, Hints) read()
data

Transfer
Plugins

Niraj Tolia © May 200612

(1) Application
API

DOT’s Modular Architecture

DOT

Application

Network

Local Storage

Storage
Plugin

Transfer
Plugin

(3) Storage Plugin
API

(2) Transfer
Plugin API

Niraj Tolia © May 200613

DOT
NetworkTransfer

Plugin
MultiPath

Plugin

Transfer Plugin API
• Simple API

• get_descriptor_list(OID, hints)
• get_chunks(descriptor_list, hints)
• cancel_chunks(chunk_list)

• Transfer plugin chaining is easy
• e.g., multipath plugin Transfer

Plugin

Transfer
Plugin

Niraj Tolia © May 200614

Implementation
• In C++ using libasync event-driven library
• One storage plugin:

– In-memory hash tables, disk backed.

• Three transfer plugins:
• Default Xfer-Xfer plugin
• Portable Storage plugin
• Multipath plugin

• Applications
• gcp, an scp-like tool for file transfers
• A DOT-enabled Postfix email server

– Included a socket-like adapter library

Niraj Tolia © May 200615

Xfer

Current DOT Prototype

NET
(DSL)

Xfer
NET Multi-

path

NET
wireless

SENDER

RECEIVER

USB
USB

InternetInternet
cache

Application-independent cache

Non-networked transfers
Multipath and Mirror support

NET

MIRROR

Xfer Plugins

Niraj Tolia © May 200616

Outline
• Motivation
• Data Oriented Transfer (DOT) service
• Evaluation
• Open Issues and Future Work
• Conclusion

Niraj Tolia © May 200617

Evaluation
• Standard file transfer
• Portable Storage
• Multi-Path
• Case Study: Postfix Email Server

• Capture and analysis of email trace
• Evaluation of DOT-enabled SMTP server
• Integration effort

Niraj Tolia © May 200618

Standard File Transfer Setup

• Two DOT-enabled machines
• Network Emulator

• Evaluate various b/w + delay combinations
• Use gcp for the file transfers
• Used 40MB, 4MB, 400KB, 40KB, 4KB files

• Presenting 40MB here

Network
Emulator

Niraj Tolia © May 200619

Standard File Transfer

• Overhead: hashing, extra RTT
• No noticeable overheads with latency

0.
5

3.
6

1.
6

3.
7

0.
7

3.
7

1.
2

4.
1

0.0

1.0

2.0

3.0

4.0

5.0

1000 Mb/s 100 Mb/s

Tr
an

sf
er

 T
im

e
(s

ec
) -

 4
0

M
B

wget scp scp w/o encr. gcp

Niraj Tolia © May 200620

Portable Storage Experiment

• 255 MB transfer over emulated DSL
• Based on Virtual Machine transfers at Carnegie Mellon
• DOT preemptively copies data onto Flash drive

• Wait 5 minutes, plug flash drive into receiver
• Two drive speeds

• 8MB/s - 1GB
• 20MB/s - 2GB

2 Mbit/s

Niraj Tolia © May 200621

Portable Storage Results

.. 1126s
(~ 19 min)

Device Inserted

Niraj Tolia © May 200622

Multipath Plugin: Load Balancing

• Varied capacity + delay of experimental links
• Compare fastest link alone with multipath plugin

on both links; what speedup?
• Transferred 40MB file

• 128 KB socket buffer sizes

Gigabit

Experimental links

Network
Emulator

Niraj Tolia © May 200623

Multipath Plugin is Effective

46%
47%
12%

23.20
22.97
38.25

43.33
100/66
10/66
1/66

100/66

47%
1.4%

1.90
3.543.59

100/0
10/0100/0

SavingsMultipathSingleLink 2Link 1

-40 MB @ 100Mbit/s ideal: 3.2 seconds

-Multipath plugin nearly doubles throughput

- TCP effects dominate. Pipe not full.

- Multipath plugin doubles by adding second
stream. Actual capacity irrelevant.

Gigabit

Link 1

Link 2

Niraj Tolia © May 200624

Postfix Email Trace Replay
• Generated 10,000 email messages from trace

• Random data matched to chunk hash data
• Preserves some similarity between messages
• Replayed through Postfix to a single local server

• Postfix disk bound… DOT CPU overhead negligible
• Savings due to duplication within emails

117 MB (68%)468Postfix + DOT
172 MB468Postfix

Bytes SentSecondsProgram

Niraj Tolia © May 200625

Postfix Integration
• Integrated DOT with the Postfix mail server

• 1 part-time week, 1 student new to Postfix
• Includes time to write generic adapter library

2.1%713,378smtp

1.7%1076,413smtpd

0.3%18470,824Postfix

421--GTC Lib

%Added LoCLoCProgram

Niraj Tolia © May 200626

Discussion on Deployment
• Application Resilience

• DOT is a service - it’s outside the control of the
application.

• Our Postfix falls back to normal SMTP if
– No Transfer Service contact
– Transfer keeps failing

• In the short term, a simple fallback is encouraged.
However, this could interfere with some functions

– DOT-based virus scanner…
• In the long term, DOT would be a part of a

system’s core infrastructure

Niraj Tolia © May 200627

Future Work
• Security

• Application encrypts before DOT
- No block-based caching, reuse, mirroring, …

• No encryption
- Resembles the status quo

• In progress: Convergent encryption
– Requires integration with DOT chunking

• Application Preferences
• Encryption, QoS, priorities, …

– DOT might benefit from application input
• Need an extensible way to express these

Niraj Tolia © May 200628

Conclusion
• DOT separates app. logic from data transfer

• Makes it easier to extend both

• Architecture works well
• Overhead low (especially in wide-area)
• Major benefits

• Caching
• Flexibility to implement new transfer techniques

• Source code available on request
http://www.cs.cmu.edu/~dga/dot/

