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ABSTRACT
This paper presents a new control strategy for data centers
that aims to optimize the trade-off between maximizing the
payoff from the provided quality of computational services
and minimizing energy costs for computation and cooling.
The data center is modeled as two interacting dynamic net-
works: a computational (cyber) network representing the
distribution and flow of computational tasks, and a ther-
mal (physical) network characterizing the distribution and
flow of thermal energy. To make the problem tractable, the
control architecture is decomposed hierarchically according
to time-scales in the thermal and computational network
dynamics, and spatially, reflecting weak coupling between
zones in the data center. Simulation results demonstrate
the effectiveness of the proposed coordinated control strat-
egy relative to traditional approaches in which the cyber and
physical resources are controlled independently.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Sys-
tem architectures, Modeling of computer architecture

1. INTRODUCTION
Data centers are cyber-physical systems. Energy man-

agement depends critically upon the management of both
computational (cyber) resources and cooling (physical) re-
sources. Although these two networks are connected through
the generation of thermal energy by the computational net-
work, they are normally controlled independently. Work-
loads are distributed to the servers to meet performance ob-
jectives under the assumption that the cooling system will
remove thermal energy as required. The cooling system re-
sponds to the thermal load generated by the servers through
thermostatic control. The decoupled control strategies used
today do not realize the efficiencies that could be obtained
through a more holistic cyber-physical system (CPS) per-
spective. This paper presents a control strategy that coor-
dinates the management of the cyber and physical resources
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in a data center based on the coupled network model intro-
duced in [14].

Data center power consumption has drastically increased
in the past few years. According to a report of the Envi-
ronmental Protection Agency (EPA) published in 2007 [29],
data center peak load power consumption was 7GW in 2006
and, at the current rate, it is expected to increase up to
12GW by 2011 leading to a cost of $7.4 billion per year. Sim-
ilarly, rack power consumption has increased up to 30KW [13].
At these power usage levels, powering and cooling servers,
racks, and the entire data center efficiently has become a
challenging problem. Monthly management cost for a 15MW
facility can be as high as $5.6M [9]. Income is determined
by service level agreements (SLAs) that set the price paid
by users based on the quality of service (QoS) they receive.
A data center’s operating margin depends on the provided
quality of service: higher QoS levels typically lead to higher
rates that can be charged to customers. The goal of the
control strategy developed in this paper is to find the best
trade-off between offered QoS and data center energy cost.

Several factors make it impractical to design and imple-
ment a single centralized controller to manage all of the
data center resources. These are large cyber-physical sys-
tems with hundreds of variables that can be measured and
controlled. Also, the dynamics of controlled processes span
over multiple scales. For example, electricity costs can fluc-
tuate on a time scale of hours, temperatures evolve in the
order of minutes, and server power states can be changed as
frequent as milliseconds. Actuators differ not only in time
scales, but also in the spatial areas they influence. For exam-
ple, computer room air conditioner (CRAC) reference tem-
peratures can affect the inlet air of multiple servers, while
server power states affect only single servers. These facts
suggest that a hierarchical distributed control approach can
best exploit the different time scales and spatial bounds of
the data center processes.

Three levels of modeling and control are proposed in this
paper: data center, zone, and intra-zone. At the data center
level, we are interested in the long-term behavior of the data
center. The time scale (hours) is large enough to disregard
thermal and computational dynamics. Electricity price, the
bulk heat management, and the long-term QoS offered are
the relevant variables at this level. At the zone level, the
time scale ranges from a few to a dozen minutes. At this
scale we are interested in optimizing the evolution of the
thermal and the computational networks. Thus, the intra-
zone time scale is on the order of tenths of a second to a
second. At this level we are interested in optimizing the



quality of service in a per job fashion. The dynamics at the
intra-zone level are much faster than the thermal dynamic
time scale, so it is reasonable at this level to disregard the
coupling between the computational and the thermal net-
work. The intra-zone control problem reduces to a standard
real-time scheduling problem that can be dealt with using
methods available in the literature (e.g., [16, 17, 18, 19]).

The following section reviews previous work on data cen-
ter control. Section 3 presents our integrated cyber-physical
data center model and the control objectives and constraints.
Section 4 develops the hierarchical distributed control strat-
egy. Simulation results for a multi-zone data center demon-
strate the effectiveness of the proposed control strategy. The
concluding section summarizes the contributions of this work
and describes current research directions.

2. PREVIOUS WORK
There have been several studies on server and cluster

power management. These studies have proposed solutions
that reduce server electricity costs by adjusting power lev-
els to track the resource demands of the workload. The
techniques used include low-power states (e.g., sleep and hi-
bernate modes), processor dynamic voltage and frequency
scaling, or DVFS [5, 15, 21, 4, 23, 7] and on/off states [3]
at the local server level, and resource redirection [11, 22, 24]
and task scheduling [8] at the cluster level. Chen et al. [4]
address the dynamic optimization problem of server provi-
sioning and frequency control to reduce power while mini-
mizing SLA violations. Raghavendra et al. [23] consider the
interaction between multiple power management controllers
at different levels of a data center, optimizing server power
without accounting for its impact on the cooling facilities.

Several studies have also examined optimization of cool-
ing power, mainly at the data center level [1, 2, 10, 12, 20].
These studies include techniques to change workload place-
ment to reduce air conditioning costs [12], as well as tech-
niques to dynamically vary air flows to specific locations to
improve cooling efficiency [20]. Tolia et al. [28] propose uni-
fied control of server power and cooling, as proposed in this
paper, but they consider only the intra-zone (blade server)
level. In this paper, we extend unified control to the zone
and data center levels in the context of a comprehensive
model that makes it possible to exploit tradeoffs between
payoffs from SLAs and energy cost.

3. PROBLEM FORMULATION
We model a data center as two coupled dynamic networks

as illustrated in Fig. 1: the computational network and the
thermal network. The computational network describes re-
lationships between workload distribution and quality of ser-
vice, while the thermal network describes the relationships
between power consumption, heat production, and heat ex-
change. As distinct workloads use data center server re-
sources differently, heterogeneous workloads can lead to dif-
ferent amounts of power consumption on each server. At the
same time, some servers are easier to cool than others (e.g.,
due to their relative positions in the rack). Thus workloads
not only have different server power requirements, their dis-
tribution in the data center can also significantly impact the
power required to remove the generated heat. The network
models developed in this section capture the implications of
these complex interactions.

Figure 1: Data center coupled network model.

3.1 Computational Network
The computational network is a multi-class open network

of queues. The data center workload is modeled as arrivals
of jobs, defined as requests for atomic computations, where
each job is a member of one of J job classes. All jobs arrive
at the scheduler which routes each job to one of N com-
putational nodes. When a job completes its execution at a
computational node, it leaves the data center. We assume
the time spent by each job at the scheduler is negligible.

Let t be the real variable representing time. In the pro-
posed model λj(t) represents the average (over a suitable
time window) arrival rate at time t for jobs in class j. λj(t)
terms are stacked into the vector λ′(t) = [λ1(t) . . . λJ(t)].
sji (t) represents the fraction of jobs in class j sent to node i
by the scheduler at time t. For all j = 1, . . . , J and for all t,
sji (t) ∈ [0, 1] and

PN
i=1 s

j
i (t) = 1. At node i, the arrival rate

of jobs of class j at time t is given by λji (t), where

λji (t) = sji (t)λ
j(t). (1)

λi(t) =
ˆ
λ1
i (t) . . . λJi (t)

˜
is the vector of arrival rates for

jobs at node i. The scheduler decisions for node i, i.e. sji (t),
are collected in the vector

s′i(t) =
ˆ
s1
i (t) . . . sJi (t)

˜
,

while the scheduler decision for all nodes are collected in the
matrix S(t),

S(t) =

264 s
′
1(t)
...

s′N (t)

375 .
Each computational node is itself a multi-class open queu-

ing network. The way a node executes the assigned jobs
determines both the QoS per job class at the node and the
amount of electrical power that the node will require. Let
pji (t) represent the ratio between the amount of computa-
tional resources used by node i to execute jobs in class j
at time t and the total computational resources available at
the node. A node can dedicate a certain amount of com-
putational resources for a job class, but not more than the
maximum amount of computational resources available and
also, the sum of all dedicated resources cannot exceed the
maximum amount of available computational resources at
the node. For all t, i = 1, . . . , N and j = 1, . . . , J , the
following constraints hold

0 ≤ pji (t) ≤ 1,

JX
j=1

pji (t) ≤ 1.

pji (t) values can be grouped into the vector

p′i(t) = [p1
i (t) . . . p

J
i (t)].



In the rest of the paper we shall denote as pi(t) the vector of
power states of node i and define P (t) as the N × J matrix
of all power states in the computational network,

P (t) =

264 p
′
1(t)
...

p′N (t)

375 .
Each pi(t) vector can be regarded as an abstraction of the
CPU power state concept.

Let lji (t) be the number of jobs of class j at the node i
at time t. We consider the case where nodes can exchange
jobs before they have been completed. Let δji,z(t) represent
the number of class j jobs that move from node z to node i
at time t. We assume the time spent to move jobs from one
node to another is negligible. δjz,z(t) = 0, 0 ≤ δji,z(t) ≤ l

j
z(t),

and
PN
i=1 δ

j
i,z(t) ≤ ljz(t) for all z = 1, . . . , N , j = 1, . . . , J ,

and for all t. These constraints state that a node cannot
exchange jobs with itself and it cannot exchange with other
nodes more jobs than those available in it.
δji,z(t) values can be collected into a N ×N matrix ∆j(t),

[∆j(t)]i,z = δji,z(t). ∆1(t), . . . ,∆J(t) are controllable vari-
ables and they represent the workload consolidation action
in a data center.

The buffer evolution at a node depends on a complex rela-
tionship between job arrival at the data center, load balanc-
ing control action, job exchange between each node couple,
and job execution at each server. For simple cases, like the
one described in Sec. 5, the buffer evolution function can
be derived by analyzing the computational network, but in
general, this function will have to be estimated from data
collected in the data center.

Let qji (t) denote the quality of service at time t for jobs in
class j at node i. qi(t) =

ˆ
q1
i (t) . . . qJi (t)

˜
is the vector

of QoS at time t at node i, given by

qi(t) = fq(i,λi(t), li(t),pi(t)). (2)

Let cq(i, qi(t)) represent the QoS cost vector at node i.
Define cq

j(i, qi(t)) as the jth element of cq(i, qi(t)). We
consider the case where customers pay for data center usage
based on the quality of the service they receive. If the quality
of service is below a certain threshold, users may be refunded
by the data center1. If cq

j(i, qi(t)) < 0 then jobs in class j
executed at node i induce a payoff for the data center, while
if cq

j(i, qi(t)) ≥ 0 execution of class j jobs at node i induce
an economic loss for the data center.

Power consumption of a computation at node i at time t
is denoted by pi(t) and its value is given by

pi(t) = fp,S(i,λi(t), li(t),pi(t)). (3)

3.2 Thermal Network
The thermal network models heat generation and exchange

in the data center. It is composed of three different node
classes: server nodes, CRAC nodes, and environment nodes.

Thermal server nodes are the physical counterpart of com-
putational server node nodes; they model how servers trans-
form the consumed power into heat. CRAC nodes model
components of the cooling subsystem; their model has been
developed considering the important features of CRAC units.

1For example, the Google Apps Service Level Agreement
provides for a period of free usage for a loss in QoS
(http://www.google.com/apps/intl/en/terms/sla.html).

Although liquid cooling techniques are currently being devel-
oped and evaluated [25], the majority of data center cooling
systems still rely on air cooling. Environment nodes repre-
sent those devices that cannot be used to perform compu-
tational work and that do not belong to the cooling sub-
system, but that take part in the heat exchange in the
data center. Devices that can be modeled as environment
nodes include uninterruptible power supplies (UPS), net-
work switches, and the external weather.
N,C,E represent the numbers of server nodes, CRAC

nodes, and environment nodes, respectively. Nodes are or-
dered as follows: 1, . . . , N are server nodes, N+1, . . . , N+C
are CRAC nodes, and N + C + 1, . . . , N + C + E are envi-
ronment nodes.

Thermal constraints in a data center are generally ex-
pressed in terms of the inlet air temperature and humidity of
each of its devices. However, since CRAC units provide au-
tomatic humidity control, only the thermal constraints need
to be considered [6]. The thermal network describes only the
inlet and outlet air temperatures of devices, disregarding the
temperature of their internal components. Tini(t) represents
the inlet air temperature of the device modeled by node i at
time t, while Touti(t) represents the outlet air temperature
of the device modeled by node i at time t. Input tempera-
tures of thermal nodes are collected in the (N +C +E)× 1
vector Tin(t) and output temperatures of thermal nodes are
collected in the (N+C+E)×1 vector Tout(t). Temperature
constraints are given as

Tin ≤ Tin(t) ≤ Tin, (4)

where the inequalities are meant component-wise.
We assume heat exchange in a data center is mainly due

to convection; conduction and radiation are neglected. We
also assume the inlet air temperature of a device can then
be approximated by a linear combination of the outlet air
temperatures of all other devices [27]. The coefficient relat-
ing the outlet air temperature of a device d with the inlet air
temperature of another device d′ depends on the amount of
air that moves from d to d′. Airflow in a data center can be
modeled in detail using complex computational fluid dynam-
ics (CFD) models. To compute control strategies, we use a
simplified model where air flows depend only the on/off
states of CRAC devices. The on/off state of each CRAC
node is represented by the binary variable ci(t). If ci(t) = 1,
then CRAC node i is in the on state at time t, while, if
ci(t) = 0, the CRAC node i is in the off state at time t.
ci(t) values are collected in the vector c(t) which takes val-
ues in {0, 1}C . The relationship between Tout(t) and Tin(t)
can now be expressed via the matrix A(c(t)) as

Tin(t) = A(c(t))Tout(t). (5)

Values of each matrix A(x), x ∈ {0, 1}C , can be estimated
from sensor measurements following the procedure discussed
in [27].

pi(t) is the power consumption at time t of the ith thermal
node. Total data center power consumption is given by the
sum of each thermal node power consumption.

Thermal Server Nodes. The results of experiments per-
formed on a desktop machine, shown in Fig. 2, suggest that
the outlet air temperature of a real server can be well ap-
proximated by the following linear different equation:

Ṫouti(t) = ki(Tini(t)− Touti(t)) + cipi(t), (6)



Figure 2: Power consumption, inlet, outlet, and esti-
mated air temperature values of a desktop machine.

where i is the index of the thermal server node representing
the real server, and ki and ci are appropriate coefficients.

CRAC nodes. A CRAC node models the cooling device
(e.g., a CRAC unit) and its co-located controller. The input
of the co-located controller is the reference temperature for
the outlet air of the cooling device, denoted by Trefi(t).

We consider a simplified case where the CRAC units can
be turned on or off independently from each other and their
supplied air temperature values can be controlled over a
predefined interval. However, the model and the control
technique developed in this paper can accommodate a more
detailed description of the data center cooling subsystem.

When ci(t) = 1 and Trefi(t) < Tini(t) then Touti(t) tends
to the reference temperature Trefi(t), while Touti(t) tends to
Tini(t) when Trefi(t) ≥ Tini(t). When ci(t) = 0 then Touti(t)
tends to Tini(t). We consider the following relationship be-
tween the reference and the output temperature of a CRAC
node i

Ṫouti(t) = −kiTouti(t) + (1− ci(t))kiTini(t)+

+ci(t)ki min{Trefi(t), Tini(t)},
(7)

where 1
ki

> 0 represents the time constant of the CRAC

node.
Power consumption of a CRAC node is given by

pi(t) = fp,C(i, c(t), Tini(t), Trefi(t), Touti(t)), (8)

where fp,C accounts for the coefficient of performance (COP)
of each CRAC unit modeled as a CRAC node, and the ad-
ditional components that consume energy in a CRAC unit
even when no power is required for cooling the air.

Environment Nodes. Environment nodes represent the
data center devices that cannot be used to perform compu-
tations or to control the environment, but that nonetheless
take part to the heat exchange. Nodes in this category can
be represented using two different models. The first model
assumes that the output temperature of the node is solely
a function of time, power consumption is always zero and
the input temperature has no relationship with the output
temperature: 

Touti(t) = fTout,E(i, t)
pi(t) = 0

. (9)

This kind of model can be used to describe the effect of the
external weather on the data center.

The second model uses a relationship between power con-
sumption, input temperature, and output temperature sim-

ilar to the thermal server node case:

Ṫouti(t) = ki(Tini(t)− Touti(t)) + cipi(t), (10)

where pi(t) can either be constant, or function of other data
center variables. For example, if we consider the model of
a UPS unit, then modeling pi(t) being proportional to the
total server power consumption can be a reasonable assump-
tion. If instead, we want to model a network switch, then a
constant power consumption model can be a better approx-
imation of the real device power consumption.

We will denote as E1 the number of environment nodes
described by (9) and as E2 ones modeled by (10).

3.3 Network coupling
Computational and thermal networks are coupled via the

computational node power consumption. Each computa-
tional node is uniquely associated to a thermal server node.
Power consumption of computational node i becomes one of
the inputs that control the output temperature evolution of
the ith thermal server node

Ṫouti(t) = ki(Tini(t)− Touti(t))+ (11)

+cifp,S(i,λi(t), li(t),pi(t)).

Eq.(11) models the relationship between workload execu-
tion and outlet air temperature evolution in a server. We
use the term server node to refer to the combination of a
computational server node and a thermal server node.

3.4 Control Objective
Let cp(t) denote the electricity price at time t. As shown

in Fig. 3, electricity price fluctuates significantly over time.
This fluctuation has to be considered in order to determine
the best trade-off between increasing the offered QoS and
decreasing the cost of powering the data center. The data
center operating cost at time t is given by

cp(t)||p(t)||1 +

NX
i=1

JX
j=1

sji (t)cq
j(i, qi(t)),

where ||p(t)||1 is the sum of the power consumption of all
thermal nodes, while sji (t) terms are used to scale the quality
of service cost obtained at node i for jobs in class j by the
ratio of class j jobs sent to node i at time t.

Define u(t) as the vector of all controllable variables, i.e.

u(t) =

26666666664

vec(S(t))
vec(P (t))
vec(∆1(t))

...
vec(∆J(t))

c(t)
Tref(t)

37777777775
,

where vec(X) is the vector obtained by stacking the columns
of the matrix X on top of one another. Let β(t) be the col-
lection of vectors pE1

(t), ToutE2(t) and λ(t). β(t) represents
the vector of uncontrollable inputs and we assume its value
to be known at every instant t.

The goal of a data center controller is to design the optimal
control u(τ), τ ∈ [t0, t0 + T ], to minimize the following cost



Figure 3: Electricity day-ahead price in north-
ern west Pennsylvania in Sept. 2009 (from
http://www.pjm.com/home.aspx).

function

J(u;β, t0, T ) =

Z t0+T

t0

cp(τ)||p(τ)||1+

+

NX
i=1

JX
j=1

sji (t)cq
j(i, qi(τ))dτ,

(12)

subject to the thermal and computational constraints de-
fined above. In (12) t0 is the initial time of the optimization
problem and T > 0 is the optimization time horizon.

The large number of variables and the (generally) nonlin-
ear constraints that govern computational and the thermal
networks imply that in most cases (12) cannot be optimized
directly. However, the natural data center modularity and
the different time scales at which different processes evolve
can be exploited using reduced-order models and relying on
a hierarchical distributed control approach.

4. CONTROL STRATEGY
Two hierarchy levels are considered in this paper: the data

center level and the zone level. The control decisions and
manipulated variables used at each level reflect the dom-
inant dynamics of the time scale being addressed at each
level, with slower thermal dynamics being most relevant at
the higher levels and fast dynamics of the computational
systems dominating the lower levels.

The data center level deals with the bulk management of
workload and thermal management, using workload projec-
tions at the hourly and daily levels to schedule cooling and
make major decisions about task and data allocations. The
zone level concerns the allocation of workload and cooling in
sub-areas of the data center and acts on a scale of minutes.

A discrete-time optimal control approach is considered at
each level of the hierarchy. τ∆(ν) represents the controller
sampling time at level ν, where level ν = 0 corresponds
to the data center level and ν = 1 to the zone level. We
assume 0 < τ∆(1) � τ∆(0). Continuous time constraints
defined in Sec. 3 are discretized according to each hierarchy
level sampling time, and controllable variables are consid-
ered constant between sampling intervals.

In the following section we introduce some additional as-
sumptions to simplify the description of the control approach.

4.1 Aggregation and disaggregation
The idea of grouping multiple heterogeneous nodes into

single server nodes stems from the analysis of the following
real data center cases: containerized data centers (e.g., the

Sun Modular Data center2), row- and rack-oriented cool-
ing [13], and blade server architectures. When the opti-
mization of a single container, row, rack, or blade enclosure
is the goal of the control problem, we can model these units
of equipment as the coupling of a computational network
and a thermal network. In each a case, the network nodes
correspond to the detailed behaviors of the components in-
ternal to the units of equipment. Alternatively, when the
goal of the control problem is the optimization of the whole
data center, each unit of equipment can be modeled as a
single server node representing the aggregate behavior of its
internal components.

Aggregating multiple heterogeneous devices into a single
server node may be a coarse approximation to the actual
behavior of a complex unit of equipment, and there is no
general method to obtain the “best” aggregate model for
complex nonlinear models like those developed in Sec. 3.
The aggregation of multiple nodes at one level into single
nodes at the level above will have to be based on engineer-
ing insight and data-driven analysis. Minimizing the differ-
ences between the aggregate evolutions of devices modeled
as single nodes at one level and the evolution of the sets of
lower-level nodes is the duty of controllers at lower levels in
the hierarchy. In this paper we consider the aggregation of
server nodes only.

The disaggregation problem is to define a function to asso-
ciate input, output, and state variables of an aggregate node
at one level to input, output, and state variables of the as-
sociated set of nodes in the next lower level in the hierarchy.
The choice of the best disaggregation function is delegated
to the lower-level controllers. In the proposed hierarchical
control strategy, the desired aggregated state variables, i.e.,
server power states, output temperatures, and buffer length,
are not transmitted to the lower-level controllers. The top-
down communication consist only of the desired power cost
and QoS cost. The goal of the zone-level controller is to find
the best disaggregation function that minimizes both the
difference between the total cost of power consumption and
the desired (aggregated) cost of power consumption and the
difference between the total QoS cost and the desired (ag-
gregated) QoS cost.

4.2 Data center level
Consider a computational network of N nodes and assume

the job arrival rate is the realization of J independent Pois-
son processes, each having parameter λj(t). The Poisson
process assumption is used then to derive the equations re-
lating job arrival rate and power state vector of a node to
the expected buffer length. In general, however, we expect
these relationship to be learned from past data. We approx-
imate the job expected arrival rate values in the kth interval
with a constant value denoted as λj(k).

At the data center level each server node, i.e., each combi-
nation of a computational server node and a thermal server
node, represents an aggregation of multiple server nodes con-
trolled by a zone-level controller.

The scheduler enforces a random policy based on the sji (k)
values, i.e., the probability to send an incoming job of class
j during the kth interval to node i is sji (k). The expected
arrival rate at node i for jobs in class j can be approximated
as λji (k) = λj(k)sji (k). Job execution time at each node i is

2http://www.sun.com/products/sunmd/s20/



exponentially distributed with parameter µji (k) = µjip
j
i (k),

where µji ≥ 0 is the maximum job execution rate for job in
class j at node i. Computational nodes in this case are just
a collection of J M/M/1 queues [26].

Due to the large sampling period used at this level, we as-
sume that we can treat the computational nodes as if they
were at their invariant distribution (when it exists) and ap-
proximate average values of their variables with their ex-
pected values.

The expected buffer length of jobs in class j at node i is
given by

l̂ji (k) =

8<:
λji (k)

µji (k)− λji (k)
µji (k) > λji (k)

+∞ otherwise

. (13)

Since l̂ji (k) is independent of l̂ji (k− 1), we neglect the possi-
bility to move jobs from one computational node to another,
i.e., ∆j(k) = 0 for all j = 1, . . . , J and k ∈ Z0.

We define quality of service obtained at node i for jobs in
class j as

qji (k) = µji (k)− λji (k). (14)

In this case the chosen QoS does not depend on lji (k).
Let cq

j(i, qi(k)) be the jth element of cq(i, qi(k)). We
define

cq
j(i, qi(k)) =

8>><>>:
+∞ qji (k) ≤ 0

c 0 < qji (k) ≤ q
α

qji (k)
+ c qji (k) > q

, (15)

where α satisfies α/q + c = c, while c and c represent re-
spectively the lower and the upper bound of the QoS cost
function. In order to avoid the case µji (k) ≤ λji (k) we set

cq
j(i, qi(k)) to infinity when qji (k) ≤ 0. In this particu-

lar case quality of service of all job classes is bounded in
the same intervals [c, c], and also, the cost function of jobs
in class j depends solely on the quality of service achieved
for class j jobs. In general, however, it may be useful to
consider different bounds for different job classes, or more
complex relationships between QoS values and the induced
cost function.

Let pi(k) represent the average power consumption of de-
vices modeled by thermal node i during the kth interval.
Thermal server node power consumption is the sum of its
static (pS,i(k)) and dynamic components (

PJ
j=1 pjD,i(k)),

pi(k) = pS,i(k) +

JX
j=1

pjD,i(k). (16)

Static power consumption is given by

pS,i(k) = pS,i

JX
j=1

pji (k),

where pS,i represents the maximum static power consump-
tion of node i. The dynamic part of the power consumption
is

pjD,i(k) =

8<: pjD,ip
j
i (k)

λji (k)

µji (k)
µji (k) > λji (k)

pjD,ip
j
i (k) otherwise

,

where pjD,i is the maximum dynamic power consumption

due to the class j jobs.
λ

j
i (k)

µ
j
i (k)

approximates the ratio of

the time interval spent by node i executing jobs in class j
during the kth interval. Since ergodicity is not guaranteed,
this approximation may be coarse.

For the thermal network we assume the sampling time
at this level is large enough so that the devices represented
by thermal nodes can reach thermal equilibrium in a time
period much shorter than the sampling time. Eq.(6) then,
can be rewritten as

Touti(k) = Tini(k) +
ci
ki

pi(k), (17)

for all i = 1, . . . , N with pi(k) given by (16).
The time constant 1

ki
of each CRAC node is assumed to

be significantly smaller than the sampling period τ∆(0). We
can then assume

Touti(k) = min{Trefi(k), Tini(k)}

for all k ∈ Z0 and i = N+1, . . . , N+C. As discussed in [12],
average power consumption of CRAC node i can therefore
be approximated as

pi(k) = ci(k)
h

max
n

0, fi(c(k))cp
Tini(k)− Trefi(k)

COPi(Trefi(k))

o
+

+pf,i(c(k))
i

where fi(c(k)) is the average air mass that flows through

CRAC unit i in the kth interval when the CRAC cooling
state is c(k). cp is the specific heat of the air, COPi is the
COP of node i, and pf,i(c(k)) is the fan power of the CRAC
when the cooling state is c(k).

Environment nodes modeled by (10), e.g., switches and
UPS units, are approximated by (17), while those environ-
ment node modeled by (9), e.g., external environment tem-
peratures, are approximated as

Touti(k) = fTout,E(i, k)
pi(k) = 0

. (18)

The input temperatures of all thermal nodes are given by

Tin(k) = A(c(k))Tout(k). (19)

Controller formulation: Let T0 be the horizon for the
optimization problem. The control variables at time k are
given by: P (k), S(k),Tref(k), and c(k), where Tref(k) =
[TrefN+1(k) . . . TrefN+C ] is the vector of reference tempera-
ture at time k. We define u as the collections of such control-
lable variables in the discrete time interval {k, . . . , k + T0}.

Denote with pE1
(k) the power consumption at time k of

the environment nodes modeled by (9) and with ToutE2(k)
the output temperature of the environment node at time k
modeled by (10). Define β(k) as the collection of vectors
pE1

(k),ToutE2(k), and λ(k). We assume β(k) to be com-

pletely known at any time k. β =
ˆ
β(k), . . . , β(k + T0)

˜
is

the set of uncontrollable inputs that affect the optimization
function.

The data center cost function can then be written as

J(u;β, k, T0) =

k+T0X
r=k

“
cp(r)||p(r)||1+

+

NX
i=1

JX
j=1

sji (r)cq
j(i, qi(r))

”
.

(20)



Constraints for this level depend only on the current time.
Therefore, a simple optimization problem that disregards
future values of the inputs can be formulated, i.e., T0 = 0.
Additional costs can be considered in the cost function in
order to reduce the variation of optimal control variables
between time instants k − 1 and k.

The solution to the above optimization problem gives the
optimal control u?(k). The optimal CRAC power state c?(k)
and reference temperature vector Tref

?(k) are sent to the
controllers of the CRAC units, while the switching matrix
S?(k) is used to tune the scheduler. Values of the P ?(k)
matrix are used jointly with other optimal control variables
to derive the optimal desired QoS cost and the power con-
sumption cost for each of the server nodes.

The optimization problem formulated at this level will in
general be a mixed-integer, nonlinear program (MINLP),
where the integer constraint is due to the CRAC cooling
state c(k).

4.3 Zone level
The decision variables for this level are the load balanc-

ing at the scheduler, the power state of each computational
node and the job exchange among computational nodes.
Constraints related to the load balancing and power state
variables are the same as the ones discussed in the previous
section.

Buffer evolution at this level has to be considered. The
expected value of lji (k + h), h ≥ 0, is computed as

l̂ji (k + h) =

+∞X
n=0

pji,n(k + h|k)n, (21)

where pji,n(k+h|k) is the probability that lji (k+h) = n given

the value lji (k) at time k. pji,n(k + h|k) values for M/M/1
queues can be found, for example, in [26]. According to

(21), we have l̂ji (k) = lji (k) for all k ∈ Z, i = 1, . . . , N and
j = 1, . . . , J .

At this level we define qji (k) to be equal to l̂ji (k). Let
cq
j(i, qi(k)) be the jth element of cq(i, qi(k)), we set

cq
j(i, qi(k)) =


αqji (k) + c 0 ≤ qji (k) < q

c qji (k) ≥ q , (22)

where α is such that αq + c = c and c < c.
Average node power consumption comprises both a static

and a dynamic term:

pi(k) = pS,i(k) +

JX
j=1

pjD,i(k), (23)

where the static power consumption is given by

pS,i(k) = pS,i

JX
j=1

pji (k)

and the dynamic part of the power consumption at a server
node i is given by

pD,i(k) =


pjD,ip

j
i (k) l̂ji (k) > 0

0 otherwise
. (24)

The sampling time at this level is not considered large
enough to be able to disregard the thermal dynamics. Ther-
mal equations described in Sec. 3 have to be discretized and
introduced as constraints.

Controller formulation: let T1 be the horizon for the
optimization problem at the zone level. Similarly to the data
center level, we denote with u the collection of controllable
variables in the discrete time interval {k, . . . , k + T1} and
with β(k) the collection of uncontrollable inputs that affect
the optimization function. In this example we consider β(k)
to be completely known at every time k.

Let cq
j? be the optimal QoS cost for class j jobs obtained

for this zone at the data center level and c?p the optimal
power consumption cost obtained for this zone at the data
center level. All of the cq

j? variables, j = 1, . . . , J and c?p are
scaled in order to compensate for the different time horizons
used at the data center level and at the current zone level.

The cost function considered by the controller at this level
is

J(u;β, k, T1) = γ, (25)

where γ has to enforce the following constraints8>>>>>><>>>>>>:

 
k+T1X
r=k

NX
i=1

sji (r)cq
j(i, qi(r))

!
− cq

j? ≤ γ j = 1, . . . , J

 
k+T1X
r=k

cp(r)||p(r)||1

!
− c?p ≤ γ.

Even though at this level we are dealing with a stochas-
tic optimization problem (future values of the buffer length
are unknown), we are able to formulate a deterministic op-
timization problem since all of the constraints and the ob-
jective function depend only on the expected values of the
buffer lengths. Differences between the expected values of
the buffer lengths and the true future values will be managed
by the receding horizon controller.

5. SIMULATION RESULTS
We consider a data center composed of 6 racks of 42 1U

servers each and 3 CRAC units with the configuration il-
lustrated in Fig. 4. Racks and CRAC units are not scaled.
Rectangles in Fig. 4 are only used to represents the relative
positions of different components.

The server nodes are identical and the CRAC nodes are
identical, both at the data center and at the zone level.
The physical positions of the computational and cooling
units lead to different thermal interactions among the nodes.
There is a single class of jobs, i.e., J = 1. In this simulation
study we consider the controller at the data center level. No
cost is incurred for changes in the control variables from step
to step and only the cost for the immediate time period are
considered in the optimization, i.e., T0 = 0.

Our proposed control strategy is compared against two
other possible control solutions: an uncoordinated controller
that optimizes the computational and thermal networks sep-
arately, and a uniform strategy that uses all available com-
putational and cooling resources to meet the workload. Re-
sults are analyzed based on the aggregated models used at
the data center level.

Thermal constraints for all of the control strategies are

5 ≤ Tini(k) ≤ 25, (26)

for all i = 1, . . . , 6, while power consumption cost is consid-
ered fixed at 3 cent/KWhr.

The uncoordinated strategy optimizes p1
i (k) and s1

i (k) val-
ues in order to minimize the cost of powering servers plus the
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Figure 4: Data center layout. 6 racks and 3 CRAC
units.
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Figure 5: Average job arrival rate and its quantized
version.

QoS cost, disregarding the cost of powering CRAC nodes.
Once the optimal values of p1

i (k) and s1
i (k) are obtained, the

uncoordinated strategy finds the best CRAC cooling state
value in order to minimize the total CRAC power cost while
enforcing the thermal constraints.

The uniform algorithm does not minimize a cost func-
tion and it does not consider the temperature evolution in
the data center. It sets all CRAC units in the on state, the
power states of all computational nodes at 1, and distributes
the workload uniformly among the servers, i.e., s1

i (k) = 1
N

for all k and i = 1, . . . , 6. It sets the reference tempera-
ture of each CRAC unit to 15oC so that, under all possible
conditions, thermal constraints are enforced.

The optimization problems are solved using the TomSym3

modeling language with KNITRO4 as the MINLP solver.

3http://tomsym.com/
4http://www.ziena.com/knitro.htm
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Figure 6: Total cost over time.
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Figure 7: Total cost over average data center usage.
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Figure 8: Power cost over average data center usage.

The average job arrival rate λ1(t) and the quantized ver-
sion, considered by the three different data center controllers,
are depicted in Fig. 5.

Define the average data center usage as

1

N

X
i:s1i 6=0

λ1
i (k)

µ1
i (k)

, (27)

where the summation includes only computational nodes ex-
ecuting jobs. Compared to Fig. 5, large average data center
usage values correspond to large job arrival rate values (e.g.,
values obtained around the 4th hour), while small average
data center usage values correspond to small job arrival rate
values (e.g., values obtained around hour the 16th hour).

As shown in Figs. 6 and 7, all three controllers increase the
total cost as the average data center usage increases. Also,
all of the three controllers are able to obtain negative total
cost values under all of the average data center usage con-
ditions. This implies that the policies enforced by the three
controllers are always profitable. As the data center usage
tends to one, the set of admissible inputs that satisfy ther-
mal and computational constraints reduce and hence, the
total cost values obtained by different controllers converge.

Figures 8 and 9 show the power cost and QoS cost, re-
spectively, as a function of the average data center usage.
The coordinated controller is able to obtain the most linear
relationship between cost of power and average data cen-
ter usage and in particular, it obtains the smallest power
cost as the data center usage tends to zero. The uniform
controller achieves the highest QoS, as it always sets server
power states to one, but this also results in the largest cost
of power. Unlike the uncoordinated controller, the coordi-
nated one takes into account both the server and the CRAC
node power consumptions when computing the best tradeoff
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Figure 9: QoS cost over average data center usage.
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Figure 10: Relative improvement in the power cost
of the coordinated strategy respect to the uncoordi-
nated and uniform strategies.

between cost of powering and QoS cost. CRAC node power
consumption is in general, a non monotonic function of the
average data center usage. This explains why the QoS cost
values obtained by the coordinated controller do not lie on
a monotonic curve.

Figure 10 shows the percentage improvement of the power
consumption cost of the coordinated strategy with respect
to the uniform and the uncoordinated strategy. In this par-
ticular simulation we can see how a slight increase in the
QoS cost can lead to a large reduction of the power con-
sumption cost, particularly when the data center is under
utilized. Since all server nodes and all of the CRAC nodes
are identical to each other, the large difference in the power
consumption cost depends on the thermal coupling between
server and CRAC nodes.

Differences between coordinated and uncoordinated con-
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Figure 11: Total cost over time.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

Avg. usage

P
o
w

e
r 

c
o
s
t

 

 

Coord

Uncoord

Uniform

Figure 12: Power cost over average data center us-
age.
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Figure 13: QoS cost over average data center usage.

trol policy, also depend on the particular QoS cost function
chosen. Figures 11, 12, and 13 present the results for a
stricter QoS cost function for which even a small reduction
of the power state value leads to a large difference in the
QoS cost. In this case, the coordinated controller is able to
outperform the uncoordinated controller only for a few data
center average utilization values.

6. DISCUSSION
This paper presents a control strategy for realizing best

trade-off between satisfying user requests and energy con-
sumption in a data center based on a model that includes
both the cyber and physical elements in the system. Sim-
ulation results demonstrate that improvements can be re-
alized using the proposed coordinated strategy relative to
traditional approaches that manage the cyber and physical
resources separately. The simulation results presented in
this paper, which are the first studies of coordinated cyber-
physical control at the data center level, indicate that the
extent of the savings depends on many factors, including
the level of the workload relative to the overall capacity of
the data center. More research is needed to determine what
factors are most significant in determining the effectiveness
of coordinated control.

We are also pursuing several other directions of research.
The proposed model is oriented toward applications where
the statistics and dynamics of the workload are known. For
cases where the workload characteristics are not known a pri-
ori, methods need to be developed to determine the model
parameters from historical data or through real-time estima-
tion. Other model parameters also need to be determined
empirically. We are currently performing experiments to



determine thermal network parameters for the Data Center
Observatory (DCO), a research data center at Carnegie Mel-
lon.5 In the future, we plan to implement the coordinated
controllers at the data center and zone levels in the DCO.

Extensions to the proposed framework are also being con-
sidered to incorporate bi-directional communication between
the levels. Currently our hierarchical distributed approach
allows only for information flow from the top down: higher-
level controllers provide targets for the disaggregated con-
trollers in lower levels. Communication from the bottom up
could enhance the ability to deal with modeling inaccura-
cies at the higher levels. For example, a zone level controller
could ask the data center controller to generate a new control
policy if there is insufficient capacity to achieve the requested
levels of service. Extensions are also needed to incorporate
additional knowledge, such as more frequent fluctuations in
energy prices.
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