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Abstract

We describe a technique called lookaside caching that
combines the strengths of distributed file systems and
portable storage devices, while negating their weaknesses.
In spite of its simplicity, this technique proves to be powerful
and versatile. By unifying distributed storage and portable
storage into a single abstraction, lookaside caching allows
users to treat devices they carry as merely performance and
availability assists for distant file servers. Careless use of
portable storage has no catastrophic consequences. Exper-
imental results show that significant performance improve-
ments are possible even in the presence of stale data on the
portable device.

1 Introduction

Floppy disks were the sole means of sharing data across
users and computers in the early days of personal computing.
Although they were trivial to use, considerable discipline
and foresight was required of users to ensure data consis-
tency and availability, and to avoid data loss — if you did not
have the right floppy at the right place and time, you were in
trouble! These limitations were overcome by the emergence
of distributed file systems such as NFS [24], Netware [8],
LanManager [34], and AFS [7]. In such a system, respon-
sibility for data management is delegated to the distributed
file system and its operational staff.

Personal storage has come full circle in the recent past.
There has been explosive growth in the availability of USB-
and Firewire-connected storage devices such as flash mem-
ory keychains and portable disk drives. Although very dif-
ferent from floppy disks in capacity, data transfer rate, form
factor, and longevity, their usage model is no different. In
other words, they are just glorified floppy disks and suffer
from the same limitations mentioned above. Why then are
portable storage devices in such demand today? Is there a
way to use them that avoids the messy mistakes of the past,
where a user was often awash in floppy disks trying to fig-
ure out which one had the latest version of a specific file? If
loss, theft or destruction of a portable storage device occurs,
how can one prevent catastrophic data loss? Since human
attention grows ever more scarce, can we reduce the data
management demands on attention and discipline in the use
of portable devices?

We focus on these and related questions in this paper. We
describe a technique called lookaside caching that combines

the strengths of distributed file systems and portable stor-
age devices, while negating their weaknesses. In spite of its
simplicity, this technique proves to be powerful and versa-
tile. By unifying “storage in the cloud” (distributed storage)
and “storage in the hand” (portable storage) into a single
abstraction, lookaside caching allows users to treat devices
they carry as merely performance and availability assists for
distant file servers. Careless use of portable storage has no
catastrophic consequences.

We begin in Section 2 by examining the strengths and
weaknesses of portable storage and distributed file systems.
We describe the design of lookaside caching in Section 3
followed by a discussion of related work in Section 4. Sec-
tion 5 describes the implementation of lookaside caching.
We quantify the performance benefit of lookaside caching
in Section 6, using three different benchmarks. We explore
broader use of lookaside caching in Section 7, and conclude
in Section 8 with a summary.

2 Background

To understand the continuing popularity of portable stor-
age, it is useful to review the strengths and weaknesses of
portable storage and distributed file systems. While there
is considerable variation in the designs of distributed file
systems, there is also a substantial degree of commonality
across them. Our discussion below focuses on these com-
mon themes.

Performance: A portable storage device offers uniform
performance at all locations, independent of factors such as
network connectivity, initial cache state, and temporal local-
ity of references. Except for a few devices such as floppy
disks, the access times and bandwidths of portable devices
are comparable to those of local disks. In contrast, the per-
formance of a distributed file system is highly variable. With
a warm client cache and good locality, performance can
match local storage. With a cold cache, poor connectivity
and low locality, performance can be intolerably slow.

Availability: If you have a portable storage device in
hand, you can access its data. Short of device failure, which
is very rare, no other common failures prevent data access.
In contrast, distributed file systems are susceptible to net-
work failure, server failure, and a wide range of operator
errors.

Robustness: A portable storage device can easily be lost,
stolen or damaged. Data on the device becomes perma-
nently inaccessible after such an event. In contrast, data in
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a distributed file system continues to be accessible even if a
particular client that uses it is lost, stolen or damaged. For
added robustness, the operational staff of a distributed file
system perform regular backups and typically keep some of
the backups off site to allow recovery after catastrophic site
failure. Backups also help recovery from user error: if a user
accidentally deletes a critical file, he can recover a backed-
up version of it. In principle, a highly disciplined user could
implement a careful regimen of backup of portable storage
to improve robustness. In practice, few users are sufficiently
disciplined and well-organized to do this. It is much simpler
for professional staff to regularly back up a few file servers,
thus benefiting all users.

Sharing/Collaboration: The existence of a common
name space simplifies sharing of data and collaboration be-
tween the users of a distributed file system. This is much
harder if done by physical transfers of devices. If one is re-
stricted to sharing through physical devices, a system such as
PersonalRAID [26] can be valuable in managing complex-
ity.

Consistency: Without explicit user effort, a distributed
file system presents the latest version of a file when it is ac-
cessed. In contrast, a portable device has to be explicitly
kept up to date. When multiple users can update a file, it is
easy to get into situations where a portable device has stale
data without its owner being aware of this fact.

Capacity: Any portable storage device has finite capac-
ity. In contrast, the client of a distributed file system can ac-
cess virtually unlimited amounts of data spread across mul-
tiple file servers. Since local storage on the client is merely
a cache of server data, its size only limits working set size
rather than total data size.

Security: The privacy and integrity of data on portable
storage devices relies primarily on physical security. A fur-
ther level of safety can be provided by encrypting the data on
the device, and by requiring a password to mount it. These
can be valuable as a second layer of defense in case physical
security fails. Denial of service is impossible if a user has
a portable storage device in hand. In contrast, the security
of data in a distributed file system is based on more frag-
ile assumptions. Denial of service may be possible through
network attacks. Privacy depends on encryption of network
traffic. Fine-grain protection of data through mechanisms
such as access control lists is possible, but relies on secure
authentication using a mechanism such as Kerberos [28].

Ubiquity: A distributed file system requires operating
system support. In addition, it may require environmental
support such as Kerberos authentication and specific fire-
wall configuration. Unless a user is at a client that meets
all of these requirements, he cannot access his data in a dis-
tributed file system. In contrast, portable storage only de-
pends on widely-supported low-level hardware and software
interfaces. If a user sits down at a random machine, he can be
much more confident of accessing data from portable storage
in his possession than from a remote file server.

3 Lookaside Caching

Our goal is to exploit the performance and availability
advantages of portable storage to improve these same at-
tributes in a distributed file system. The resulting design
should preserve all other characteristics of the underlying
distributed file system. In particular, there should be no com-
promise of robustness, consistency or security. There should
also be no added complexity in sharing and collaboration.
Finally, the design should be tolerant of human error: im-
proper use of the portable storage device (such as using the
wrong device or forgetting to copy the latest version of a file
to it) should not hurt correctness.

Lookaside caching is an extension of AFS2-style whole-
file caching [7] that meets the above goals. It is based on the
observation that virtually all distributed file system protocols
provide separate remote procedure calls (RPCs) for access of
meta-data and access of data content. Lookaside caching ex-
tends the definition of meta-data to include a cryptographic
hash of data content. This extension only increases the size
of meta-data by a modest amount: just 20 bytes if SHA-
1 [15] is used as the hash. Since hash size does not depend
on file length, it costs very little to obtain and cache hash
information even for many large files. Using POSIX termi-
nology, caching the results of “ls -lR” of a large tree is
feasible on a small client, even if there is not enough cache
space for the contents of all the files in the tree. This con-
tinues to be true even if one augments stat information for
each file or directory in the tree with its SHA-1 hash.

Once a client possesses valid meta-data for an object,
it can use the hash to redirect the fetch of data content. If
a mounted portable storage device has a file with matching
length and hash, the client can obtain the contents of the file
from the device rather than from the file server. Whether it
is beneficial to do this depends on factors such as file size,
network bandwidth, and device transfer rate. The important
point is that possession of the hash gives a degree of freedom
that clients of a distributed file system do not possess today.

Since lookaside caching treats the hash as part of the
meta-data, there is no compromise in consistency. The un-
derlying cache coherence protocol of the distributed file sys-
tem determines how closely client state tracks server state.
There is no degradation in the accuracy of this tracking if
the hash is used to redirect access of data content. To ensure
no compromise in security, the file server should return a null
hash for any object on which the client only has permission
to read the meta-data.

Lookaside caching can be viewed as a degenerate case
of the use of file recipes, as described by Tolia et al. [31].
In that work, a recipe is an XML description of file content
that enables block-level reassembly of the file from content-
addressable storage. One can view the hash of a file as the
smallest possible recipe for it. The implementation using
recipes is considerably more complex than our support for
lookaside caching. In return for this complexity, synthesis



from recipes may succeed in many situations where looka-
side fails.

4 Related Work

Lookaside caching has very different goals and de-
sign philosophy from systems such as PersonalRAID [26],
Segank [25], and Footloose [18]. Our starting point is the
well-entrenched base of distributed file systems in existence
today. We assume that these are successful because they of-
fer genuine value to their users. Hence, our goal is to inte-
grate portable storage devices into such a system in a manner
that is minimally disruptive of its existing usage model. In
addition, we make no changes to the native file system for-
mat of a portable storage device; all we require is that the
device be mountable as a local file system at any client of
the distributed file system. In contrast, all the above sys-
tems takes a much richer view of the role of portable stor-
age devices. They view them as first-class citizens rather
than as adjuncts to a distributed file system. They also use
customized storage layouts on the devices. Therefore, our
design and implementation are much simpler, but also more
limited in functionality.

Another project with overlapping goals is the Personal
Server [32] effort. This system tries to integrate compu-
tation, communication, and storage to provide ubiquitous
access to personal information and applications. However,
being a mobile computer, it is more heavyweight in terms
of the hardware requirements. There are also a number of
commercial solutions providing mobility solutions through
the use of portable storage devices. Migo [12], one of these
products, has combined a USB portable storage device with
synchronization software for personal files, email, and other
settings. However, these solutions focus exclusively on the
use of the portable device and do not integrate network stor-
age.

The use of cryptographic hashes to describe data has
been explored earlier in a variety of different contexts.
Spring et al. [27] used the technique to identify and remove
redundant network traffic. The Single Instance Storage [3]
and the Venti [20] systems use cryptographic hashes to re-
move duplicate content at the file and block level respec-
tively. Unlike lookaside caching, a number of other sys-
tems such as CASPER [31] and LBFS [14] prefer to further
subdivide objects. This slightly more complicated approach
usually uses an algorithm similar to the Rabin fingerprinting
technique [10, 21]. For lookaside caching, it was a conscious
decision to favor the simplest possible design. It is also well
known that the use of hashes can leak information. In the
context of lookaside caching, fetching a SHA-1 hash with-
out fetching the corresponding contents can indicate that the
client already possessed the data. As shown by Mogul et
al. [13], this can allow a malicious server to inspect a client’s
cache. The most obvious solution is to only allow lookaside
caching with trusted servers. As we believe that the predom-

inant use of lookaside caching will be with trusted servers,
this solution should not significantly impact users.

5 Prototype Implementation

We have implemented lookaside caching in the Coda file
system on Linux. The user-level implementation of Coda
client cache manager and server code greatly simplified our
effort since no kernel changes were needed. The implemen-
tation consists of four parts: a small change to the client-
server protocol; a quick index check (the “lookaside”) in the
code path for handling a cache miss; a tool for generating
lookaside indexes; and a set of user commands to include or
exclude specific lookaside devices.

The protocol change replaces two RPCs,
ViceGetAttr() and ViceValidateAttrs() with
the extended calls ViceGetAttrPlusSHA() and
ViceValidateAttrsPlusSHA() that have an extra
parameter for the SHA-1 hash of the file. ViceGetAttr()
is used to obtain meta-data for a file or directory, while
ViceValidateAttrs() is used to revalidate cached meta-
data for a collection of files or directories when connectivity
is restored to a server. Our implementation preserves
compatibility with legacy servers. If a client connects to
a server that has not been upgraded to support lookaside
caching, it falls back to using the original RPCs mentioned
above.

The lookaside occurs just before the execution of the
ViceFetch() RPC to fetch file contents. Before network
communication is attempted, the client consults one or more
lookaside indexes to see if a local file with identical SHA-1
value exists. Trusting in the collision resistance of SHA-
1 [11], a copy operation on the local file can then be a sub-
stitute for the RPC. To detect version skew between the lo-
cal file and its index, the SHA-1 hash of the local file is re-
computed. In case of a mismatch, the local file substitution is
suppressed and the cache miss is serviced by contacting the
file server. Coda’s consistency model is not compromised,
although some small amount amount of work is wasted on
the lookaside path.

The index generation tool walks the file tree rooted at a
specified pathname. It computes the SHA-1 hash of each file
and enters the filename-hash pair into the index file, which is
similar to a Berkeley DB database [17]. The tool is flexible
regarding the location of the tree being indexed: it can be
local, on a mounted storage device, or even on a nearby NFS
or Samba server. For a removable device such as a USB stor-
age keychain or a DVD, the index is typically located right
on the device. This yields a self-describing storage device
that can be used anywhere. Note that an index captures the
values in a tree at one point in time. No attempt is made to
track updates made to the tree after the index is created. The
tool must be re-run to reflect those updates. Thus, a looka-
side index is best viewed as a collection of hints [30].



cfs lka --clear exclude all indexes
cfs lka +db1 include index db1
cfs lka -db1 exclude index db1
cfs lka --list print lookaside statistics

Figure 1. Lookaside Commands on Client

Dynamic inclusion or exclusion of lookaside devices is
done through user-level commands. Figure 1 lists the rel-
evant commands on a client. Note that multiple lookaside
devices can be in use at the same time. The devices are
searched in order of inclusion.

As mentioned earlier, the fact that our system does not
modify the portable device’s storage layout allows it to use
any device that exports a generic file system interface. This
allows files to be stored on the device in any manner cho-
sen by the user, including the same tree structure as the
distributed file system. For example, in the Kernel Com-
pile benchmark described in Section 6.1, the portable device
was populated by simply unarchiving a normal kernel source
tree. The advantage of this is that user can still have access
to the files in the absence of a network or even a distributed
file system client. However, this also allows the user to edit
files without the knowledge of the lookaside caching system.
While recomputation of the file’s hash at the time of use can
expose the update, it is up to the user to manually copy the
changes back into the distributed file system.

6 Evaluation

How much of a performance win can lookaside caching
provide? The answer clearly depends on the workload, on
network quality, and on the overlap between data on the
lookaside device and data accessed from the distributed file
system. To obtain a quantitative understanding of this re-
lationship, we have conducted controlled experiments using
three different benchmarks: a kernel compile benchmark, a
virtual machine migration benchmark, and single-user trace
replay benchmark. The rest of this section presents our
benchmarks, experimental setups, and results.

6.1 Kernel Compile

6.1.1 Benchmark Description

Our first benchmark models a nomadic software devel-
oper who does work at different locations such as his home,
his office, and a satellite office. Network connection quality
to his file server may vary across these locations. The de-
veloper carries a version of his source code on a lookaside
device. This version may have some stale files because of
server updates by other members of the development team.

We use version 2.4 of the Linux kernel as the source tree
in our benchmark. Figure 2 shows the measured degree of
commonality across five different minor versions of the 2.4
kernel, obtained from the FTP site ftp.kernel.org. This

Kernel Size Files Bytes Release Days
Version (MB) Same Same Date Stale
2.4.18 118.0 100% 100% 02/25/02 0
2.4.17 116.2 90% 79% 12/21/01 66
2.4.13 112.6 74% 52% 10/23/01 125
2.4.9 108.0 53% 30% 08/16/01 193
2.4.0 95.3 28% 13% 01/04/01 417

This table shows key characteristics of the Linux kernel ver-
sions used in our compilation benchmark. In our experiments,
the kernel being compiled was always version 2.4.18. The
kernel on the lookaside device varied across the versions
listed above. The second column gives the size of the source
tree of a version. The third column shows what fraction of the
files in that version remain the same in version 2.4.18. The
number of bytes in those files, relative to total release size, is
given in the fourth column. The last column gives the differ-
ence between the release date of a version and the release
date of version 2.4.18.

Figure 2. Linux Kernel Source Trees

data shows that there is a substantial degree of commonality
even across releases that are many weeks apart. Our exper-
iments only use five versions of Linux, but Figure 3 con-
firms that commonality across minor versions exists for all
of Linux 2.4. Although we do not show the corresponding
figure, we have also confirmed the existence of substantial
commonality across Linux 2.2 versions.

6.1.2 Experimental Setup

Figure 4 shows the experimental setup we used for our
evaluation. The client contained a 3.0 GHz Pentium R© 4
processor (with Hyper-Threading) with 2 GB of SDRAM.
The file server contained a 2.0 GHz Pentium R© 4 proces-
sor (without Hyper-Threading) with 1 GB of SDRAM. Both
machines ran Red Hat 9.0 Linux and Coda 6.0.2, and were
connected by 100 Mb/s Ethernet. The client file cache size
was large enough to prevent eviction during the experiments,
and the client was operated in write-disconnected mode. We
ensured that the client file cache was always cold at the start
of an experiment. To discount the effect of a cold I/O buffer
cache on the server, a warming run was done prior to each
set of experiments.

All experiments were run at four different bandwidth set-
tings: 100 Mb/s, 10 Mb/s, 1 Mb/s and 100 Kb/s. We used
a NISTNet network router [16] to control bandwidth. The
router is simply a standard PC with two network interfaces
running Red Hat 7.2 Linux and release 2.0.12 of the NIST-
Net software. No extra latency was added at 100 Mb/s and
10 Mb/s. For 1 Mb/s and 100 Kb/s, we configured NISTNet
to add round trip latencies of 10 ms and 100 ms respectively.

The lookaside device used in our experiments was a
512 MB Hi-Speed USB flash memory keychain. The man-
ufacturer of this device quotes a nominal read bandwidth of
48 Mb/s, and a nominal write bandwidth of 36 Mb/s. We
conducted a set of tests on our client to verify these figures.
Figure 6 presents our results. For all file sizes ranging from
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Figure 4. Experimental Setup

4 KB to 100 MB, the measured read and write bandwidths
were much lower than the manufacturer’s figures.

6.1.3 Results

The performance metric in this benchmark is the elapsed
time to compile the 2.4.18 kernel. This directly corresponds
to the performance perceived by our hypothetical software
developer. Although the kernel being compiled was always
version 2.4.18 in our experiments, we varied the contents of
the portable storage device to explore the effects of using
stale lookaside data. The portable storage device was un-
mounted between each experiment run to discount the effect
of the buffer cache.

Figure 5 presents our results. For each portable device
state shown in that figure, the corresponding “Files Same”
and “Bytes Same” columns of Figure 2 bound the useful-
ness of lookaside caching. The “Days Stale” column indi-
cates the staleness of device state relative to the kernel being
compiled.

At the lowest bandwidth (100 Kb/s), the win due to
lookaside caching is impressive: over 90% with an up-to-

Measured Data Rate
File Size Read (Mb/s) Write (Mb/s)

4 KB 6.3 7.4
16 KB 6.3 12.5
64 KB 16.7 25.0

256 KB 25.0 22.2
1 MB 28.6 25.8

10 MB 29.3 26.4
100 MB 29.4 26.5

This tables displays the measured read and write bandwidths
for different file sizes on the portable storage device used in
our experiments. To discount caching effects, we unmounted
and remounted the device before each trial. For the same rea-
son, all writes were performed in synchronous mode. Every
data point is the mean of three trials; the standard deviation
observed was negligible.

Figure 6. Portable Storage Device Performance

date device (improving from 9348.8 seconds to 884.9 sec-
onds), and a non-trivial 10.6% (from 9348.8 seconds to
8356.7 seconds) with data that is over a year old (version
2.4.0)! Data that is over two months old (version 2.4.17) is
still able to give a win of 67.8% (from 9348.8 seconds to
3011.2 seconds).

At a bandwidth of 1 Mb/s, the wins are still impres-
sive. They range from 63% (from 1148.3 seconds to 424.8
seconds) with an up-to-date portable device, down to 4.7%
(1148.3 seconds to 1094.3 seconds) with the oldest device
state. A device that is stale by one version (2.4.17) still gives
a win of 52.7% (1148.3 seconds to 543.6 seconds).

On a slow LAN (10 Mb/s), lookaside caching continues
to give a strong win if the portable device has current data:
27.1% (388.4 seconds to 282.9 seconds). The win drops to
6.1% (388.4 seconds to 364.8 seconds) when the portable
device is one version old (2.4.17). When the version is older
than 2.4.17, the cost of failed lookasides exceeds the benefits
of successful ones. This yields an overall loss rather than a
win (represented as a negative win in Figure 5). The worst
loss at 10 Mb/s is 8.4% (388.4 seconds to 421.1 seconds).

Only on a fast LAN (100 Mb/s) does the overhead of
lookaside caching exceed its benefit for all device states. The
loss ranges from a trivial 1.7% (287.7 seconds to 292.7 sec-
onds) with current device state to a substantial 24.5% (287.7
seconds to 358.1 seconds) with the oldest device state. Since
the client cache manager already monitors bandwidth to
servers, it would be simple to suppress lookaside at high
bandwidths. Although we have not yet implemented this
simple change, we are confident that it can result in a sys-
tem that almost never loses due to lookaside caching.

6.2 Internet Suspend/Resume
6.2.1 Benchmark Description

Our second benchmark is based on the application that
forced us to rethink the relationship between portable stor-
age and distributed file systems. Internet Suspend/Resume



Lookaside Device State
Bandwidth No Device 2.4.18 2.4.17 2.4.13 2.4.9 2.4.0

100 Mb/s 287.7 (5.6) 292.7 (6.4) 324.7 (16.4) 346.4 (6.9) 362.7 (3.4) 358.1 (7.7)
[-1.7%] [-12.9%] [-20.4%] [-26.1%] [-24.5%]

10 Mb/s 388.4 (12.9) 282.9 (8.3) 364.8 (12.4) 402.7 (2.3) 410.9 (2.1) 421.1 (12.8)
[27.1%] [6.1%] [-3.7%] [-5.8%] [-8.4%]

1 Mb/s 1148.3 (6.9) 424.8 (3.1) 543.6 (11.5) 835.8 (3.7) 1012.4 (12.0) 1094.3 (5.4)
[63.0%] [52.7%] [27.2%] [11.8%] [4.7%]

100 Kb/s 9348.8 (84.3) 884.9 (12.0) 3011.2 (167.6) 5824.0 (221.6) 7616.0 (130.0) 8356.7 (226.9)
[90.5%] [67.8%] [37.7%] [18.5%] [10.6%]

These results show the time (in seconds) taken to compile the Linux 2.4.18 kernel. The column labeled “No Device” shows the
time taken for the compile when no portable device was present and all data had to be fetched over the network. The column
labeled “2.4.18” shows the results when all of the required data was present on the storage device and only meta-data (i.e. stat
information) was fetched across the network. The rest of the columns show the cases where the lookaside device had versions
of the Linux kernel older than 2.4.18. Each data point is the mean of three trials; standard deviations are in parentheses. The
numbers in square brackets give the “win” for each case: that is, the percentage improvement over the “no device” case.

Figure 5. Time for Compiling Linux Kernel 2.4.18

(ISR) is a thick-client mechanism that allows a user to sus-
pend work on one machine, travel to another location, and
resume work on another machine there [9]. The user-visible
state at resume is exactly what it was at suspend. ISR is
implemented by layering a virtual machine (VM) on a dis-
tributed file system. The ISR prototype layers VMware on
Coda, and represents VM state as a tree of 256 KB files.

A key ISR challenge is large VM state, typically many
tens of GB. When a user resumes on a machine with a cold
file cache, misses on the 256 KB files can result in significant
performance degradation. This overhead can be substantial
at resume sites with poor connectivity to the file server that
holds VM state. If a user is willing to carry a portable storage
device with him, part of the VM state can be copied to the
device at suspend. Lookaside caching can then reduce the
performance overhead of cache misses at the resume site. It
might not always be possible to carry the entire VM state as
writing it to the portable device may take too long for a user
in a hurry to leave. In contrast, propagating updates to a file
server can continue after the user leaves.

A different use of lookaside caching for ISR is based on
the observation that there is often substantial commonality
in VM state across users. For example, the installed code
for applications such as Microsoft Office is likely to be the
same for all users running the identical software release of
those applications [3]. Since this code does not change until
a software upgrade (typically many months apart), it would
be simple to distribute copies of the relevant 256 KB files on
DVD or CD-ROM media at likely resume sites.

Notice that lookaside caching is tolerant of human error

in both of the above contexts. If the user inserts the wrong
USB storage keychain into his machine at resume, stale data
on it will be ignored. Similarly, use of the wrong DVD or
CD-ROM does not hurt correctness. In both cases, the user
sees slower performance but is otherwise unaffected.

Since ISR is intended for interactive workloads typ-
ical of laptop environments, we created a benchmark
called the Common Desktop Application (CDA) that mod-
els an interactive Windows user. CDA uses Visual Ba-
sic scripting to drive Microsoft Office applications such as
Word, Excel, Powerpoint, Access, and Internet Explorer.
It consists of a total of 113 independently-timed opera-
tions such as find-and-replace, open-document, and
save-as-html. Note that each of these macro-operations
may result in more than one file system call within the VM
and, consequently, multiple requests to Coda. Minor user-
level actions such as keystrokes, object selection, or mouse-
clicks are not timed.

6.2.2 Experimental Setup

Our experimental infrastructure consists of clients with
2.0 GHz Pentium R© 4 processors connected to a server
with a 1.2 GHz Pentium R© III XeonTM processor through
100 Mb/s Ethernet. All machines have 1 GB of RAM, and
run Red Hat 7.3 Linux. Unless indicated otherwise, a Hi-
Speed USB flash memory keychain was used. Clients use
VMware Workstation 3.1 and have an 8 GB Coda file cache.
The VM is configured to have 256 MB of RAM and 4 GB
of disk, and runs Windows XP as the guest OS. As in the
previous benchmark, we use the NISTNet network emulator



No With
Lookaside Lookaside Win

100 Mb/s 14 (0.5) 13 (2.2) 7.1%
10 Mb/s 39 (0.4) 12 (0.5) 69.2%
1 Mb/s 317 (0.3) 12 (0.3) 96.2%

100 Kb/s 4301 (0.6) 12 (0.1) 99.7%

This table shows the resume latency (in seconds) for the CDA
benchmark at different bandwidths, with and without looka-
side to a USB flash memory keychain. Each data point is the
mean of three trials; standard deviations are in parentheses.

Figure 7. Resume Latency

to control bandwidth.

6.2.3 Results

From a user’s perspective, the key performance metrics
of ISR can be characterized by two questions:

• How slow is the resume step?
This speed is determined by the time to fetch and de-
compress the physical memory image of the VM that
was saved at suspend. This is the smallest part of total
VM state that must be present to begin execution. The
rest of the state can be demand-fetched after execution
resumes. We refer to the delay between the resume
command and the earliest possible user interaction as
Resume Latency.

• After resume, how much is work slowed?
The user may suffer performance delays after resume
due to file cache misses triggered by his VM interac-
tions. The metric we use to reflect the user’s experi-
ence is the total time to perform all the operations in
the CDA benchmark (this excludes user think time).
We refer to this metric as Total Operation Latency.

Portable storage can improve both resume latency and
total operation latency. Figure 7 presents our results for the
case where a USB flash memory keychain is updated at sus-
pend with the minimal state needed for resume. This is a
single 41 MB file corresponding to the compressed physical
memory image of the suspended virtual machine. Compar-
ing the second and third columns of this figure, we see that
the effect of lookaside caching is noticeable below 100 Mb/s,
and is dramatic at 100 Kb/s. A resume time of just 12 sec-
onds rather than 317 seconds (at 1 Mb/s) or 4301 seconds
(at 100 Kb/s) can make a world of a difference to a user with
a few minutes of time in a coffee shop or a waiting room.
Even at 10 Mb/s, resume latency is a factor of 3 faster (12
seconds rather than 39 seconds). The user only pays a small
price for these substantial gains: he has to carry a portable
storage device, and has to wait for the device to be updated
at suspend. With a Hi-Speed USB device this wait is just a
few seconds.

No With
Lookaside Lookaside Win

100 Mb/s 173 (9) 161 (28) 6.9%
10 Mb/s 370 (14) 212 (12) 42.7%
1 Mb/s 2688 (39) 1032 (31) 61.6%

100 Kb/s 30531 (1490) 9530 (141) 68.8%

This table gives the total operation latency (in seconds) for
the CDA benchmark at different bandwidths, with and with-
out lookaside to a DVD. Each data point is the mean of three
trials, with standard deviation in parentheses. Approximately
50% of the client cache misses were satisfied by lookaside on
the DVD. The files on the DVD correspond to the image of a
freshly-installed virtual machine, prior to user customization.

Figure 8. Total Operation Latency

To explore the impact of lookaside caching on total oper-
ation latency, we constructed a DVD with the VM state cap-
tured after installation of Windows XP and the Microsoft Of-
fice suite, but before any user-specific or benchmark-specific
customizations. We used this DVD as a lookaside device
after resume. In a real-life deployment, we expect that an
entity such as the computing services organization of a com-
pany, university or ISP would create a set of VM installation
images and matching DVDs for its clientele. Distributing
DVDs to each ISR site does not compromise ease of man-
agement because misplaced or missing DVDs do not hurt
correctness. A concerned user could, of course, carry his
own DVD.

Figure 8 shows that lookaside caching reduces total op-
eration latency at all bandwidths, with the reduction being
most noticeable at low bandwidths. Figure 12 shows the dis-
tribution of slowdown for individual operations in the bench-
mark. We define slowdown as (TBW −TNoISR)/TNoISR,
with TBW being the benchmark running time at the given
bandwidth and TNoISR its running time in VMware without
ISR. The figure confirms that lookaside caching reduces the
number of operations with very large slowdowns.

6.3 Trace Replay

6.3.1 Benchmark Description

Finally, we used the trace replay benchmark described
by Flinn et al. [6] in their evaluation of data staging. This
benchmark consists of four traces that were obtained from
single-user workstations and that range in collection dura-
tion from slightly less than 8 hours to slightly more than a
day. Figure 9 summarizes the attributes of these traces. To
ensure a heavy workload, we replayed these traces as fast as
possible, without any filtering or think delays.

6.3.2 Experimental Setup

The experimental setup used was the same as that de-
scribed in Section 6.1.2.



Lookaside Device State
Trace Bandwidth No Device 100% 66% 33%

100 Mb/s 50.1 (2.6) 53.1 (2.4) 50.5 (3.1) 48.8 (1.9)
Purcell 10 Mb/s 61.2 (2.0) 55.0 (6.5) 56.5 (2.9) 56.6 (4.6)

1 Mb/s 292.8 (4.1) 178.4 (3.1) 223.5 (1.8) 254.2 (2.0)
100 Kb/s 2828.7 (28.0) 1343.0 (0.7) 2072.1 (30.8) 2404.6 (16.3)

100 Mb/s 26.4 (1.6) 31.8 (0.9) 29.8 (0.9) 27.9 (0.8)
Messiaen 10 Mb/s 36.3 (0.5) 34.1 (0.7) 36.7 (1.5) 37.8 (0.5)

1 Mb/s 218.9 (1.2) 117.8 (0.9) 157.0 (0.6) 184.8 (1.3)
100 Kb/s 2327.3 (14.8) 903.8 (1.4) 1439.8 (6.3) 1856.6 (89.2)

100 Mb/s 30.0 (1.6) 34.3 (3.1) 33.1 (1.2) 30.6 (2.1)
Robin 10 Mb/s 37.3 (2.6) 33.3 (3.8) 33.8 (2.5) 37.7 (4.5)

1 Mb/s 229.1 (3.4) 104.1 (1.3) 143.2 (3.3) 186.7 (2.5)
100 Kb/s 2713.3 (1.5) 750.4 (5.4) 1347.6 (29.6) 2033.4 (124.6)

100 Mb/s 8.2 (0.3) 8.9 (0.2) 9.0 (0.3) 8.8 (0.2)
Berlioz 10 Mb/s 12.9 (0.8) 9.3 (0.3) 9.9 (0.4) 12.0 (1.6)

1 Mb/s 94.0 (0.3) 30.2 (0.6) 50.8 (0.3) 71.6 (0.5)
100 Kb/s 1281.2 (54.6) 216.8 (0.5) 524.4 (0.4) 1090.5 (52.6)

The above results show how long it took for each trace to complete at different portable device states as well as different bandwidth
settings. The column labeled “No Device” shows the time taken for trace execution when no portable device was present and all
data had to be fetched over the network. The column labeled 100% shows the results when all of the required data was present on
the storage device and only meta-data (i.e. stat information) was fetched across the network. The rest of the columns show the
cases where the lookaside device had varying fractions of the working set. Each data point is the mean of three trials; standard
deviations are in parentheses.

Figure 10. Time for Trace Replay

Number of Length Update Working
Trace Operations (Hours) Ops. Set (MB)

purcell 87739 27.66 6% 252
messiaen 44027 21.27 2% 227

robin 37504 15.46 7% 85
berlioz 17917 7.85 8% 57

This table summarizes the file system traces used for the
benchmark described in Section 6.3. “Update Ops.” only refer
to the percentage of operations that change the file system
state such as mkdir, close-after-write, etc. but not individual
reads and writes. The working set is the size of the data ac-
cessed during trace execution.

Figure 9. Trace Statistics

6.3.3 Results
The performance metric in this benchmark is the time

taken for trace replay completion. Although no think time is
included, trace replay time is still a good indicator of perfor-
mance seen by the user.

To evaluate the performance in relation to the portable
device state, we varied the amount of data found on the de-
vice. This was done by examining the pre-trace snapshots
of the traced file systems and then selecting a subset of the
trace’s working set. For each trace, we began by randomly
selecting 33% of the files from the pre-trace snapshot as
the initial portable device state. Files were again randomly
added to raise the percentage to 66% and then finally 100%.
However, these percentages do not necessarily mean that the
data from every file present on the portable storage device
was used during the benchmark. The snapshot creation tool
also creates files that might be overwritten, unlinked, or sim-

ply stat-ed. Therefore, while these files might be present
on the portable device, they would not be read from it during
trace replay.

Figure 10 presents our results. The baseline for compar-
ison, shown in column 3 of the figure, was the time taken
for trace replay when no lookaside device was present. At
the lowest bandwidth (100 Kb/s), the win due to lookaside
caching with an up-to-date device was impressive: ranging
from 83% for the Berlioz trace (improving from 1281.2 sec-
onds to 216.8 seconds) to 53% for the Purcell trace (improv-
ing from 2828.7 seconds to 1343.0 seconds). Even with de-
vices that only had 33% of the data, we were still able to get
wins ranging from 25% for the Robin trace to 15% for the
Berlioz and Purcell traces.

At a bandwidth of 1 Mb/s, the wins still remain substan-
tial. For an up-to-date device, they range from 68% for the
Berlioz trace (improving from 94.0 seconds to 30.2 seconds)
to 39% for the Purcell trace (improving from 292.8 seconds
to 178.4 seconds). Even when the device contain less useful
data, the wins still range from 24% to 46% when the device
has 66% of the snapshot and from 13% to 24% when the
device has 33% of the snapshot.

On a slow LAN (10 Mb/s) the wins can be strong for an
up-to-date device: ranging from 28% for the Berlioz trace
(improving from 12.9 seconds to 9.3 seconds) to 6% for
Messiaen (improving from 36.3 seconds to 34.1 seconds).
Wins tend to tail off beyond this point as the device con-
tains lesser fractions of the working set but it is important to
note that performance is never significantly below that of the
baseline.



Only on a fast LAN (100 Mb/s) does the overhead of
lookaside caching begin to dominate. For an up-to-date de-
vice, the traces show a loss ranging from 6% for Purcell
(changing from 50.1 seconds to 53.1 seconds) to a loss of
20% for Messiaen (changing from 26.4 seconds to 31.8 sec-
onds). While the percentages might be high, the absolute
difference in number of seconds is not and might be imper-
ceptible to the user. It is also interesting to note that the loss
decreases when there are fewer files on the portable storage
device. For example, the loss for the Robin trace drops from
14% when the device is up-to-date (difference of 4.3 sec-
onds) to 2% when the device has 33% of the files present in
the snapshot (difference of 0.6 seconds). As mentioned ear-
lier in Section 6.1.3, the system should suppress lookaside
in such scenarios.

Even with 100% success in lookaside caching, the 100
Kb/s numbers for all of the traces are substantially greater
than the corresponding 100 Mb/s numbers. This is due to
the large number of meta-data accesses, each incurring RPC
latency.

7 Broader Uses of Lookaside Caching

Although motivated by portable storage, lookaside
caching has the potential to be applied in many other con-
texts. Any source of data that is hash-addressable can be
used for lookaside. Distributed hash tables (DHTs) are one
such source. There is growing interest in DHTs such as Pas-
try [23], Chord [29], Tapestry [33] and CAN [22]. There
is also growing interest in planetary-scale services such as
PlanetLab [19] and logistical storage such as the Internet
Backplane Protocol [2]. Finally, hash-addressable storage
hardware is now available [5]. Together, these trends sug-
gest that Content-Addressable Storage (CAS) will become a
widely-supported service in the future.

Lookaside caching enables a conventional distributed
file system based on the client-server model to take advan-
tage of the geographical distribution and replication of data
offered by CAS providers. As with portable storage, there
is no compromise of the consistency model. Lookaside to
a CAS provider improves performance without any negative
consequences.

We have recently extended the prototype implementa-
tion described in Section 5 to support off-machine CAS
providers. Experiments with this extended prototype con-
firm its performance benefits. For the ISR benchmark de-
scribed in Section 6.2, Figure 11 shows the performance
benefit of using a LAN-attached CAS provider with same
contents as the DVD of Figure 8. Since the CAS provider is
on a faster machine than the file server, Figure 11 shows a
substantial benefit even at 100 Mb/s.

Another potential application of lookaside caching is in
implementing a form of cooperative caching [1, 4]. A col-
lection of distributed file system clients with mutual trust
(typically at one location) can export each other’s file caches

No With
Lookaside Lookaside Win

100 Mb/s 173 (9) 103 (3.9) 40.1%
10 Mb/s 370 (14) 163 (2.9) 55.9%
1 Mb/s 2688 (39) 899 (26.4) 66.6%

100 Kb/s 30531 (1490) 8567 (463.9) 71.9%

This table gives the total operation latency (in seconds) for the
CDA benchmark of Section 6.2 at different bandwidths, with
and without lookaside to a LAN-attached CAS provider. The
CAS provider contains the same state as the DVD used for
the results of Figure 8. Each data point is the mean of three
trials, with standard deviation in parentheses.

Figure 11. Off-machine Lookaside

as CAS providers. No protocol is needed to maintain mutual
cache consistency; divergent caches may, at worst, reduce
lookaside performance improvement. This form of cooper-
ative caching can be especially valuable in situations where
the clients have LAN connectivity to each other, but poor
connectivity to a distant file server. The heavy price of a
cache miss on a large file is then borne only by the first
client to access the file. Misses elsewhere are serviced at
LAN speeds, provided the file has not been replaced in the
first client’s cache.

8 Conclusion

“Sneakernet,” the informal term for manual transport of
data, is alive and well today in spite of advances in network-
ing and distributed file systems. Early in this paper, we ex-
amined why this is the case. Carrying your data on a portable
storage device gives you full confidence that you will be able
to access that data anywhere, regardless of network qual-
ity, network or server outages, and machine configuration.
Unfortunately, this confidence comes at a high price. Re-
membering to carry the right device, ensuring that data on
it is current, tracking updates by collaborators, and guarding
against loss, theft and damage are all burdens borne by the
user. Most harried mobile users would gladly delegate these
chores if only they could be confident that they would have
easy access to their critical data at all times and places.

Lookaside caching suggests a way of achieving this goal.
Let the true home of your data be in a distributed file system.
Make a copy of your critical data on a portable storage de-
vice. If you find yourself needing to access the data in a
desperate situation, just use the device directly — you are
no worse off than if you were relying on sneakernet. In all
other situations, use the device for lookaside caching. On
a slow network or with a heavily loaded server, you will
benefit from improved performance. With network or server
outages, you will benefit from improved availability if your
distributed file system supports disconnected operation and
if you have hoarded all your meta-data.

Notice that you make the decision to use the device di-



rectly or via lookaside caching at the point of use, not a
priori. This preserves maximum flexibility up front, when
there may be uncertainty about the exact future locations
where you will need to access the data. Lookaside caching
thus integrates portable storage devices and distributed file
systems in a manner that combines their strengths. It pre-
serves the intrinsic advantages of performance, availability
and ubiquity possessed by portable devices, while simulta-
neously preserving the consistency, robustness and ease of
sharing/collaboration provided by distributed file systems.

One can envision many extensions to lookaside caching.
For example, the client cache manager could track portable
device state and update stale files automatically. This would
require a binding between the name space on the device
and the name space of the distributed file system. With this
change, a portable device effectively becomes an extension
of the client’s cache. Another extension would be to support
lookaside on individual blocks of a file rather than a whole-
file basis. While this is conceptually more general, it is not
clear how useful it would be in practice because parts of files
would be missing if the portable device were to be used di-
rectly rather than via lookaside.

Overall, we believe that the current design of lookaside
caching represents a sweet spot in the space of design trade-
offs. It is conceptually simple, easy to implement, and tol-
erant of human error. It provides good performance and
availability benefits without compromising the strengths of
portable storage devices or distributed file systems. A user
no longer has to choose between distributed and portable
storage. You can cache as well as carry!
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(a) 100 Mb/s
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(b) 10 Mb/s
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(c) 1 Mb/s

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

Operations Sorted by Slowdown

S
lo

w
d

o
w

n

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

Operations Sorted by Slowdown

S
lo

w
d

o
w

n

(d) 100 Kb/s

These figures compares the distribution of slowdown for the operations of the CDA benchmark without lookaside caching to their
slowdowns with lookaside caching to a DVD.

Figure 12. Impact of Lookaside Caching on Slowdown of CDA Benchmark Operations


