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ABSTRACT
This paper proposes an architecture for optimized resource allo-
cation in Infrastructure-as-a-Service (IaaS)-based cloud systems.
Current IaaS systems are usually unaware of the hosted applica-
tion’s requirements and therefore allocate resources independently
of its needs, which can significantly impact performance for dis-
tributed data-intensive applications.

To address this resource allocation problem, we propose an ar-
chitecture that adopts a “what if ” methodology to guide allocation
decisions taken by the IaaS. The architecture uses a prediction en-
gine with a lightweight simulator to estimate the performance of a
given resource allocation and a genetic algorithm to find an opti-
mized solution in the large search space. We have built a prototype
for Topology-Aware Resource Allocation (TARA) and evaluated it
on a 80 server cluster with two representative MapReduce-based
benchmarks. Our results show that TARA reduces the job com-
pletion time of these applications by up to 59% when compared to
application-independent allocation policies.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems; E [Data]:
Miscellaneous

General Terms
Design, Management, Performance

Keywords
Virtualization, Performance, Modeling, MapReduce, Hadoop, Topol-
ogy Awareness, Infrastructure-as-a-Service, IaaS

1. INTRODUCTION
Recently, there has been a dramatic increase in the popularity of

cloud-based Infrastructure-as-a-Service (IaaS) systems [1] that rent
compute resources on-demand, bill on a pay-as-you-go basis, and
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multiplex many users on the same physical infrastructure. Current
IaaS systems usually provide Virtual Machines (VMs) that are sub-
sequently customized by the user. As the placement of these VMs
can significantly impact application performance, we believe that
both the workload’s resource usage characteristics and the topol-
ogy and utilization of the IaaS need to be carefully considered to
come up with an optimized allocation policy. Since IaaS providers
today are unaware of the hosted application’s requirements, they
allocate resources independently of an application’s requirements.
Similarly, as IaaS users do not have fine-grained visibility into or
control over the underlying IaaS infrastructure, they can only rely
on application-level optimization. While coarse-grained resource
selection (e.g., restricting task execution to a particular data center)
can be used, it is insufficient for optimizing performance.

Further, even though application-level optimization techniques [10,
20] can be used, they only alleviate the problem within an existing
resource allocation. For example, when dealing with communication-
intensive workloads, allocating VMs without considering network
topology reduces performance by requiring inter-VM traffic to tra-
verse bottlenecked network paths. It is therefore critical to optimize
the initial resource allocation that could be responsible for the ma-
jority of performance anomalies.

One possible alternative might require users to explicitly specify
their resource requirements, or “hints,” to guide resource alloca-
tion. However, if based on incomplete information, hints can be
incorrect or, depending on IaaS resource availability, impossible to
satisfy. A successful solution therefore requires the IaaS to derive
the information necessary for optimization with minimal or no user
input. Further, when compared to application-independent alloca-
tion policies, it should improve performance with low latency and
high confidence.

To address this issue, we propose an architecture that adopts a
“what if ” methodology. Our solution gathers information without
explicit user input, and uses the information to forecast the per-
formance of any particular resource allocation. Our prototype for
Topology-Aware Resource Allocation (TARA) is composed of a
prediction engine that uses a lightweight simulator to estimate the
performance of a given resource allocation and a genetic algorithm
to find an optimized solution in the large search space.

To check the feasibility of our general approach, we evaluate it
in a particular context. Specifically, in this paper, we concentrate
on data-intensive applications, exemplified by MapReduce [6], that
are sensitive to the network topology underlying their allocated re-
sources and the background traffic from co-located workloads. We
selected these workloads because they represent an important and
emerging trend of computation, and are showing increased use on
public IaaS systems.



Section 2 describes TARA’s architecture. Our prototype-based
evaluation in Section 3 demonstrates the accuracy and scalability
of the prediction engine and TARA’s effectiveness when compared
to application-independent resource allocation policies. Sections 4
and 5 conclude with a discussion of related work and an overview
of our future work.

2. ARCHITECTURE
TARA is composed of two major components: a prediction en-

gine and a fast genetic algorithm-based search technique. The pre-
diction engine is the entity responsible for optimizing resource al-
location. When it receives a resource request, the prediction en-
gine iterates through the possible subsets of available resources
(each distinct subset is known as a candidate) and identifies an al-
location that optimizes estimated job completion time. However,
even with a lightweight prediction engine, exhaustively iterating
through all possible candidates is infeasible due to the scale of IaaS
systems. We have therefore developed a genetic algorithm-based
search technique that allows TARA to guide the prediction engine
through the search space intelligently.

2.1 Prediction Engine
The prediction engine maps resource allocation candidates to

scores that measures their “fitness” with respect to a given objective
function, so that TARA can compare and rank different candidates.
The inputs used in the scoring process can be seen in Figure 1. We
describe these three inputs in greater detail below, show how they
are obtained without manual input, and then describe how they are
used within a lightweight MapReduce simulator.

2.1.1 Objective Function
The objective function defines the metric that TARA should opti-

mize. For example, given the increasing cost and scarcity of power
in the data center, an objective function might measure the increase
in power usage due to a particular allocation. Our prototype’s ob-
jective function uses MapReduce job completion time as the op-
timization metric because it indirectly maps to the monetary cost
of executing the job on an IaaS system. The output value for the
objective function is calculated using the MapReduce simulator de-
scribed in Section 2.1.4.

2.1.2 Application Description
The application description consists of three parts: 1) the frame-

work type that identifies the framework model to use, 2) workload-
specific parameters that describe the particular application’s resource
usage and 3) a request for resources including the number of VMs,
storage, etc.

The prediction engine uses a model-based approach to predict
the behavior of the given application on the selected framework.
As each framework behaves differently, it requires a model for the
framework being optimized, and the user specifies the framework
type. Currently, our prototype only supports the Hadoop-based
MapReduce framework.

For MapReduce-based applications, TARA needs runtime-specific
information to predict performance (as defined by the objective
function). This information is further divided into two groups:
framework-specific configuration parameters and job-specific re-
source requirements.

Framework-specific parameters define the configuration of the
application-level environment within which the job executes. Ex-
amples include the number of map and reduce slots configured in
the MapReduce framework. This information can usually be auto-
matically derived from configuration files.

Figure 1: TARA’s Architecture

Job-specific resource requirements for the MapReduce frame-
work include selectivity (input/output ratio) during the map and re-
duce phases, CPU cycles required per input record for both map
and reduce tasks, and CPU overhead per task. For our prototype,
we analyzed Hadoop logs to derive information on the job. These
logs are usually gathered from a previous application run or a test
run with a small subset of data.

2.1.3 IaaS Information on Available Resources
The final input required by the prediction engine is a resource

snapshot of the IaaS data center. This includes information derived
from both the virtualization layer and the IaaS monitoring service.
The information gathered ranges from a list of available servers,
current load and available capacity on individual servers to data
center topology and a recent measurement of available bandwidth
on each network link.

2.1.4 Lightweight MapReduce Model/Simulator
As the relationship between a set of selected servers, available

network bandwidth, and MapReduce performance is not straight-
forward, we adopted a simulation-based approach to predict MapRe-
duce job completion time, the objective function’s metric. The
simulator we built uses the application description, IaaS resource
information, and an allocation candidate provided by the search al-
gorithm to simulate the execution flow of the Hadoop MapReduce
job. The simulator imitates the behavior of the existing Hadoop
scheduler to place tasks on nodes, calculates the resource share of
each task, and advances tasks until the job finishes.

As there is no benefit of using TARA’s prediction-based approach
if finding an optimized resource allocation takes an inordinate amount
of time, we decided to trade absolute accuracy for speed. Given
that the main objective of the simulator is to score candidates for
comparison, we focused of ensuring that the relative performance
trend between different candidates was representative of the trends
that would be observed on real hardware. To enable fast scoring
for each candidate, we used a simplified execution model instead
of attempting a full-system simulation. For example, we used a
stream-based approach to simulate network traffic. While this is
not as accurate as a packet-level simulation, our results showed that
it was sufficient to compare aggregate performance. Similarly, we
used a simple disk model instead of a DiskSim-based approach [5].

As input, the simulator uses the application description, IaaS re-
source information, and an allocation candidate, provided by the
search algorithm described in Section 2.2. The simulator mod-



els the application by following the control flow of the Hadoop
MapReduce framework. As a result, the simulator outputs the pre-
dicted completion time of the job.

For every map or reduce task, the simulator will allocate CPU
cycles that are proportional to the input size instead of performing
the actual computation. Each map task will consume a fraction
of the input data and generate intermediate output. The size of
intermediate output is determined by the selectivity, or input/output
ratio, that was obtained from the job-specific information defined in
Section 2.1.2. Following the map step, each reducer then performs
a network copy of the intermediate output generated by the map
tasks. The job finishes when the last reduce task finishes.

2.2 Search Algorithm
In any large IaaS system, a request for r VMs will have a large

number of possible resource allocation candidates. If n servers are
available to host at most one VM, the total number of possible com-
binations is

(n
r
)
. Given that n� r, exhaustively searching through

all possible candidates for an optimal solution is not feasible in a
computationally short period of time.

To efficiently identify an approximate solution, we chose a ge-
netic algorithm (GA) [7] to generate possible candidates for the
prediction engine to evaluate. GA is a search technique inspired
by evolutionary biology for finding solutions to optimization and
search problems. Candidates are represented as genes and they
evolve toward better solutions. In comparison to other search tech-
niques, we found that GA was a good match for the resource allo-
cation problem. It was natural to map server selection in an IaaS
system to GA’s gene representation, and to apply operations during
the GA’s evolution process.

To represent each possible candidate, we use a bit string with
the length of n, the number of servers available to host a single
VM. The binary value of each bit means whether the corresponding
server is selected or not. For each bit in the string, a value of 1
represents the physical server being selected for hosting a VM and
a 0 represents the server being excluded. To evaluate a candidate,
the prediction engine described above is used.

Once we have the genetic representation and the fitness function,
GA initializes a population of candidates. It then goes through the
evolution process of reproduction and selection until it terminates.
In the reproduction step, mutation, swap, or crossover operations
are applied at random to the candidate population to create off-
spring, i.e., the next generation of candidates. Once each candidate
has been evaluated, a stochastic process is used to select a majority
of the “fitter” candidates along with a small percentage of “weak”
candidates to maintain population diversity.

For our implementation, the population size and the offspring
ratio were selected after performing a sensitivity analysis.

3. EVALUATION
There are three main goals of our evaluation. First, we quantify

the scalability and performance of TARA’s prediction engine. Sec-
ond, we quantify application performance using a TARA-based re-
source allocation vs. other heuristic-based resource allocation poli-
cies. Finally, we confirm that the performance trends predicted by
TARA’s simulation-based approach matches those observed by run-
ning the application on real hardware.

3.1 Experimental Setup
We used the HP Labs Open Cirrus cluster [2] to evaluate TARA.

The testbed used is a subset of the larger cluster and was composed
of 111 machines with a single-socket quad-core Intel 3.0 GHz Xeon
X3370 processor, 8 GB of RAM, a Gigabit Ethernet port, and four

750 GB disks. There were eight top-of-rack switches with a 10 GigE
uplink, each connecting to a maximum of 16 machines.

All machines in the test bed ran the Ubuntu 9.04 Linux distribu-
tion with Xen 3.4.1 [4] as the virtualization layer. VMs were con-
figured with access to 4 GB of RAM and 4 Virtual CPUs. For our
MapReduce framework, we used Cloudera’s Hadoop 0.18.3 distri-
bution with an HDFS replication factor of 3 and Sun’s Java 1.6.0.

Even though we have a moderately large test cluster, it is still
considerably smaller than the size of most IaaS systems. There-
fore, we created virtual topologies and used them as the input to
TARA and the different resource allocation policies described be-
low. Based on the resource allocation decision taken, we then used
Linux’s traffic control and routing mechanisms to create the under-
lying network topology. While we experimented with a number
of different topologies, we only present the results from a repre-
sentative topology here. The virtual topology used consisted of
20 racks with each rack containing 40 servers available to host a
single VM. To model different background workloads and rack-
utilization levels, we restricted each rack’s uplink bandwidth rang-
ing from 800 Mbit/s to 200 Mbit/s with a step of 100 Mbit/s. Ex-
cluding nodes used as virtual switches, we ran benchmarks that
spanned 80 nodes.

To evaluate TARA, we used two benchmarks. For Sort, a widely
used synthetic benchmark [6], we generated 160 GB (2 GB/node)
of random data as input. Analytics, the second benchmark, oper-
ates on Wikipedia access logs to track popularity of each article.
It is comprised of two phases, and we ran our experiments with a
438 GB dataset that covers three months of logs.

3.2 Resource Allocation Policies
We used four different allocation policies for comparison. These

policies, that can be used as manually-generated hints, included:

• RR-R: allocates VMs in a round-robin (RR) manner across
racks (-R).

• RR-S: allocates VMs in a round-robin (RR) manner across
servers (-S). This is the default policy used by Eucalyptus [14]
and, based on work by Ristenpart et al. [15], we also believe
that it is closest to what is used by Amazon’s EC2 for a sin-
gle job. In order to positively bias RR-S results, we also
enabled this policy to select racks with the highest available
bandwidth first.

• H-1: A hybrid policy that combines RR-S and RR-R with a
preference for selecting servers in the rack with the greatest
available bandwidth but will only select a maximum of 20
servers per rack.

• H-2: A hybrid policy similar to H-1 but only selects a maxi-
mum of 10 servers per rack.

The above four policies were compared to:

• TARA: uses the best allocation found by TARA.

As stated earlier, each physical node never contains more than
one benchmark VM for all of the above allocation policies. Further,
input data for all benchmarks is only copied into the VMs after they
are launched but before the benchmarks are executed.

3.3 Results

3.3.1 Prediction Engine Microbenchmarks
We conducted two different experiments to individually quantify

the scalability of both the simulator and the search algorithm.
First, we timed how long the simulator took to predict job com-

pletion time for the sort benchmark using a given resource alloca-
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Figure 2: Search Algorithm Efficiency

tion of 80 VMs. We repeated this experiment 20 times and discov-
ered that, on average, the simulator took 0.96 seconds to predict
completion time with very little variation (σ = 0.019).

Second, we examined the efficiency of the search algorithm in
finding an optimized resource placement for the same benchmark
and topology. Figure 2 shows that the algorithm discovers a better
allocation than the initial population in 12 seconds, and a signifi-
cantly better allocation in 45 seconds. In addition, we should note
that TARA’s prediction engine is currently unoptimized and runs
on a single server. We expect to reduce the prediction overhead by
using more machines and an island model [12] to evaluate a larger
number of the candidates in parallel.

3.3.2 Benchmark Results
The results from the benchmarks can be seen in Figure 3, rep-

resented by dark (blue) bars. The left side is the result from Sort
benchmark, and the result from the first phase of Analytics bench-
mark is on the right side. The second phase of Analytics is omitted,
but the figure is similar. Among the application-independent re-
source allocation policies, we see that RR-R is the best for Sort,
and H-2 for Analytics. It also suggests that no single heuristic is a
good fit for all jobs.

Once TARA is introduced, its application and topology-aware
resource allocation policy performs considerably better than the
application-independent policies. In the case of Sort, it reduces
the completion time by 25–59%. For Analytics, TARA reduces the
completion time of phase 1 by 1% when compared to H-2 and by as
much as 35% when compared to the RR-S. After combining phase
1 and 2, TARA’s overall performance gain ranges from 8% to 41%
when compared to the completion times of H-2 and RR-S.

In addition, we can compare the prediction engine’s output to the
results obtained from running on real hardware. The light (green)
bars in Figure 3 show the completion time predicted by TARA.
As can be seen, the simulation-based predicted completion time
doesn’t always track the results observed on real hardware. The
difference ranges from 2–27% for the Sort benchmark and from
0.3–19% for Phase 1 of the Analytics benchmark. However, as
mentioned previously in Section 2.1.4, the goal of the lightweight
simulator was not to be an accurate predictor of completion time
but instead to correctly identify performance differences between
different resource allocations. As seen in the figure, predicted times
follow the trends of the actual completion times on real hardware.
Further, given the approximate nature of our GA-based algorithm,
we believe that the search for fit candidates is not unduly sensitive
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Figure 3: Benchmark Results

to small simulation accuracies and are quantifying this as a part of
our ongoing work.

4. RELATED WORK
Like TARA, there has been work in the Grid Computing commu-

nity on communication-aware job placement. However, this work
has predominantly concentrated on the overheads of WAN com-
munication between Grid sites [13, 18]. More closely related is the
work by Santos et al. [17] on combining administrator policieswith
resource allocation decisions but it only looked at a coarse-grained
network usage and the simulation-based evaluation examined allo-
cation decisions but did not consider application performance.

Regarding MapReduce, there have been various application-level
optimization efforts [16, 20]. While TARA can be used to achieve
the same goal, it does so at the infrastructure level and is therefore
complementary to the application-level optimization.

Similar to TARA’s prediction engine, Wang et al. [19] have also
built a Hadoop simulator to predict completion time on different
network topologies. However, it would be too slow to be used
while determining an optimized resource allocation. In a similar
vein, Kambatla et al. [11] attempt to determine optimal values for
MapReduce’s configuration parameters (e.g., number of map and
reduce slots) using resource consumption signatures of similar ap-
plications.

Finally, given that network congestion has become a concern
in data centers today, there have been hardware-intensive efforts
to rewire or rearchitect Layer-2 data center topologies [3, 8, 9].
While we believe that some of these technologies will eventually
see wider adoption, they are currently expensive in terms of port
costs, extra cabling, end-host modifications, or the requirement to
replace existing infrastructure. Further, TARA will benefit data
centers that decide to only partially rearchitect the network to pro-
vide more bandwidth than currently available but less than full-
bisection bandwidth.

5. CONCLUSION AND FUTURE WORK
Cloud-based Infrastructure-as-a-Service models are gaining in

popularity. However, the potentially huge variations in performance
due to the application-unaware resource allocation in these environ-
ments is likely to pose a key challenge for their increased adoption.
In this paper, we propose and evaluate a topology-aware resource
allocation solution that addresses this problem.

Our approach derives application-specific information with lit-
tle manual input (retaining the simplicity of interfaces that have



made cloud computing popular) and finds an optimized allocation
with low latency and high confidence. In this paper, we focus
on MapReduce-based data-intensive workloads and build a solu-
tion based on a lightweight MapReduce simulator and a genetic-
algorithm based search optimization to guide resource allocation.
We have developed a prototype of our architecture and demon-
strated the benefits of our architecture on a cluster with 80 nodes
on a sort and analytics-based benchmark. Our results show that
TARA can reduce completion time by up to 59% when compared
to simple allocation policies.

While our work focused on topology-aware resource allocation
for data-intensive workloads, the general architecture can be ex-
tended to other classes of applications and resource types. We plan
on quantifying these benefits as a part of future work. Similarly,
we expect to study more sophisticated objective functions including
infrastructure costs, power, and reliability. We are also extending
our evaluation to more realistic cases in which a node hosts mul-
tiple VMs and task completion time can vary due to “noisy neigh-
bors.” In addition, while we verified the feasibility of our simu-
lation and the GA-based approach, it requires an explicit model
and a sophisticated simulator. We therefore also plan on explor-
ing alternate methodologies for prediction and search, including
machine-learning based approaches. Finally, we are also attempt-
ing to define a general interface between the IaaS and applications
to allow fine-grained control while preserving the flexibility of the
IaaS in managing its infrastructure.

Overall, as “cloud-based” platforms see wider adoption, future
IaaS systems will increasingly need better resource management
architectures. We believe that approaches like ours that address
this problem without a significant increase in interface complexity
and with low overhead will be a key component of future systems.
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